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Mapping clustered mutations in cancer 
reveals APOBEC3 mutagenesis of ecDNA

Erik N. Bergstrom1,2,3, Jens Luebeck4,5, Mia Petljak6, Azhar Khandekar1,2,3,4, Mark Barnes1,2,3, 
Tongwu Zhang7, Christopher D. Steele8, Nischalan Pillay8,9, Maria Teresa Landi7, 
Vineet Bafna5,10, Paul S. Mischel11,12, Reuben S. Harris13,14,15,16 & Ludmil B. Alexandrov1,2,3 ✉

Clustered somatic mutations are common in cancer genomes and previous analyses 
reveal several types of clustered single-base substitutions, which include doublet- and 
multi-base substitutions1–5, diffuse hypermutation termed omikli6, and longer 
strand-coordinated events termed kataegis3,7–9. Here we provide a comprehensive 
characterization of clustered substitutions and clustered small insertions and 
deletions (indels) across 2,583 whole-genome-sequenced cancers from 30 types of 
cancer10. Clustered mutations were highly enriched in driver genes and associated 
with differential gene expression and changes in overall survival. Several distinct 
mutational processes gave rise to clustered indels, including signatures that were 
enriched in tobacco smokers and homologous-recombination-deficient cancers. 
Doublet-base substitutions were caused by at least 12 mutational processes, whereas 
most multi-base substitutions were generated by either tobacco smoking or exposure 
to ultraviolet light. Omikli events, which have previously been attributed to APOBEC3 
activity6, accounted for a large proportion of clustered substitutions; however, only 
16.2% of omikli matched APOBEC3 patterns. Kataegis was generated by multiple 
mutational processes, and 76.1% of all kataegic events exhibited mutational patterns 
that are associated with the activation-induced deaminase (AID) and APOBEC3 family 
of deaminases. Co-occurrence of APOBEC3 kataegis and extrachromosomal DNA 
(ecDNA), termed kyklonas (Greek for cyclone), was found in 31% of samples with 
ecDNA. Multiple distinct kyklonic events were observed on most mutated ecDNA. 
ecDNA containing known cancer genes exhibited both positive selection and kyklonic 
hypermutation. Our results reveal the diversity of clustered mutational processes in 
human cancer and the role of APOBEC3 in recurrently mutating and fuelling the 
evolution of ecDNA.

Cancer genomes contain somatic mutations that are imprinted by 
different mutational processes1,11. Most single-base substitutions and 
small indels are independently scattered across the genome; however, 
a subset of substitutions and indels tend to cluster12,13. This clustering 
has been attributed to a combination of heterogeneous mutation rates 
across the genome, biophysical characteristics of exogenous carcino-
gens, dysregulation of endogenous processes and larger mutational 
events associated with genome instability—amongst others2,3,6–8,10,13–19. 
Previous analyses of clustered mutations have focused on single-base 
substitutions and revealed several classes of clustered events, including 
doublet- and multi-base substitutions1–5 (DBSs and MBSs, respectively), 
diffuse hypermutation (omikli)6 and longer events (kataegis)3,7–9. Most 

kataegic events were found to be strand-coordinated, defined as shar-
ing the same strand and reference allele3,11. Previous studies have also 
revealed nine clustered signatures13 and clustered driver substitutions 
due to APOBEC3-associated mutagenesis6 or carcinogenic-triggered 
POLH mutagenesis13.

DBSs have been extensively examined, revealing multiple endogenous 
and exogenous processes that can cause these events, including failure 
of DNA repair pathways and exposure to environmental mutagens1,3,11.  
By contrast, MBSs have not been comprehensively investigated, presum-
ably owing to their small numbers in cancer genomes. Moreover, only 
a handful of processes have been associated with omikli and kataegic 
events, with most processes attributed to the AID and APOBEC3 family 
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of deaminases3,6–8,13,14,20–23. Specifically, the APOBEC3 enzymes, which 
are typically responsible for antiviral responses24–30, give rise to omikli 
and kataegis by requiring single-stranded DNA as a substrate6,8,23,31. 
Omikli were found to be enriched in early replicating regions and more 
prevalent in microsatellite stable tumours, indicating that mismatch 
repair has a role in exposing short single-stranded DNA regions6.  
The differential activity of mismatch repair towards gene-rich regions 
results in increased omikli events within cancer genes6. Kataegis is 
less prevalent than omikli as it is likely to depend on longer tracks of 
single-stranded DNA7,8,19. Such tracks are typically available during the 
repair of double-strand breaks and most kataegis has been observed 
within 10 kb of detected breakpoints10.

Amplification of known cancer genes is known to drive tumorigenesis 
in many types of cancer32. Studies have shown high copy-number states 
of circular ecDNAs, which often contain known cancer genes and are 
found in most cancers32–35. The circular nature of ecDNAs and their 
rapid replication mimic double-stranded DNA viral pathogens, which 
indicates that they could be substrates for APOBEC3 mutagenesis; this 
may contribute to the evolution of tumours that contain ecDNA through 
accelerated diversification of extrachromosomal oncoproteins.

The landscape of clustered mutations
To identify clustered mutations, a sample-dependent intra-mutational 
distance (IMD) cut-off was derived in which mutations below the cut-off 
were unlikely to occur by chance (q-value < 0.01). A statistical approach 
using the IMD cut-off, variant allele frequencies (VAFs) and corrections 
for local sequence context was applied to each specimen (Methods, 
Extended Data Fig. 1a). Clustered mutations with consistent VAFs were 

subclassified into four categories (Extended Data Fig. 1b). DBSs and 
MBSs were characterized as two adjacent mutations (DBSs) and as three 
or more adjacent mutations (MBSs) (IMD = 1). Multiple substitutions 
each with IMD > 1 bp and below the sample-dependent cut-off were 
characterized as either omikli (two to three substitutions) or kataegis 
(four or more substitutions) (Supplementary Fig. 1). Clustered sub-
stitutions with inconsistent VAFs were classified as ‘other’. Although 
clustered indels were not subclassified into different categories, most 
events resembled diffuse hypermutation, with 92.3% of events having 
only two indels (Extended Data Fig. 1c).

Examining 2,583 whole-genome-sequenced cancers from the 
Pan-Cancer Analysis of Whole Genomes (PCAWG) project revealed a 
total of 1,686,013 clustered single-base substitutions and 21,368 clus-
tered indels (Fig. 1, Extended Data Fig. 1d). DBSs, MBSs, omikli and katae-
gis comprised 45.7%, 0.7%, 37.2% and 7.0% of clustered substitutions 
across all samples, respectively, and their distributions varied greatly 
within and across cancer types. For example, melanoma had the highest 
clustered substitution burden, with ultraviolet light associated dou-
blets (CC>TT) accounting for 74.2% of clustered mutations; however, 
these contributed only 5.3% of all substitutions in melanoma (Fig. 1a). 
By contrast, 11.5% of all substitutions in bone leiomyosarcomas were 
clustered, and omikli and kataegis constituted 43.8% and 46.7% of these 
mutations, respectively (Fig. 1a). Clustered indels exhibited similarly 
diverse patterns within and across cancer types (Fig. 1b). For example, 
the highest mutational burden of clustered indels was observed in lung 
and ovarian cancers. Clustered indels in lung cancer accounted for only 
2.6% of all indels and were characterized by 1-bp deletions. By contrast, 
clustered long indels at microhomologies were commonly found in 
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Fig. 1 | The landscape of clustered mutations across human cancer. 
 a, Pan-cancer distribution of clustered substitutions subclassified into DBSs, 
MBSs, omikli, kataegis and other clustered mutations. Top, each black dot 
represents a single cancer genome. Red bars reflect the median clustered TMB 
(mutations (mut) per Mb) for cancer types. Middle, the clustered TMB 
normalized to the genome-wide TMB reflecting the contribution of clustered 
mutations to the overall TMB of a given sample. Red bars reflect the median 
contribution for cancer types. Bottom, the proportion of each subclass of 
clustered events for a given cancer type with the total number of samples 
having at least a single clustered event over the total number of samples within 

a given cancer cohort. b, Pan-cancer distribution of clustered small indels.  
The top and middle panels have the same information as a. Bottom, the 
proportion of each cluster type of indel for a given cancer type with the total 
number of samples having at least a single clustered indel over the total 
number of samples within a given cancer cohort. All 2,583 
whole-genome-sequenced samples from PCAWG are included in the analysis; 
however, cancers with fewer than 10 samples were removed from the main 
figure and included in Extended Data Fig. 1d. For definitions of abbreviations 
for cancer types used in the figures, see 'Cancer-type abbreviations' in 
Methods.
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ovarian and breast cancers and contributed more than 10% of all indels 
in a subset of samples (Fig. 1b). Correlations between the total number 
of mutations and the number of clustered mutations were observed for 
DBSs and omikli but not for MBSs, kataegis or indels (Extended Data 
Fig. 1e). In most cancers, DBSs and omikli had VAFs consistent with 
those of non-clustered mutations, whereas MBSs and kataegis tended 
to have lower VAFs (Extended Data Fig. 1f). Kataegic events contained 4 
to 44 mutations and 81% of events were strand-coordinated, indicative 
of damage or enzymatic changes on a single DNA strand.

The overall survival was compared between patients with cancers 
containing high and low numbers of clustered mutations within 
whole-genome-sequenced PCAWG and whole-exome sequenced 
The Cancer Genome Atlas (TCGA) cancer types36. Better overall 
survival was observed only in whole-genome-sequenced ovarian 
cancers that contained high-levels of clustered substitutions or clus-
tered indels (q-values < 0.05) (Extended Data Fig. 1g, h). Conversely, 
whole-exome-sequenced adrenocortical carcinomas containing 
clustered substitutions were associated with a worse overall survival 
(q-value = 7.2 × 10−5) (Extended Data Fig. 1i–k).

Signatures of clustered mutations
Mutational signature analysis was performed for each category of 
clustered events, which enabled the identification of 12 DBS, 5 MBS, 
17 omikli, 9 kataegic and 6 clustered indel signatures (Fig. 2, Sup-
plementary Tables 1–5). Although DBS signatures have previously 
been described1, previous analysis combined DBSs and MBSs into a 
single class1. Separating these events into individual classes showed 
that a multitude of processes can give rise to DBSs, whereas most MBSs 
are attributable to signatures associated with tobacco smoking (SBS4) 
or ultraviolet light (SBS7). Additional DBS and MBS signatures were 
found within a small subset of cancer types (Extended Data Fig. 2).

In cancer genomes, omikli were previously attributed to APOBEC3 
mutagenesis6 with some indirect evidence from experimental mod-
els23,37,38. Our analysis of sequencing data39 from the clonally expanded 
breast cancer cell line BT-474 with active APOBEC3 mutagenesis experi-
mentally confirmed the existence of APOBEC3-associated omikli events 
(cosine similarity: 0.99) (Extended Data Fig. 3a). Only 16.2% of omikli 
events across the 2,583 cancer genomes matched the APOBEC3 muta-
tional pattern, suggesting that a variety of other processes can give 
rise to diffuse clustered hypermutation. Notably, our analysis revealed 
omikli due to tobacco smoking (SBS4), clock-like mutational processes 
(SBS5), ultraviolet light (SBS7), both direct and indirect mutations 
from AID (SBS9 and SBS85), and multiple mutational signatures with 
unknown aetiology in different cancer types (SBS8, SBS12, SBS17a/b, 
SBS28, SBS40 and SBS41) (Fig. 2). Cell lines previously exposed to 
benzo[a]pyrene40 and ultraviolet light41 confirmed the generation of 
omikli events as a result of these two environmental exposures (cosine 
similarities: 0.86 and 0.84, respectively) (Extended Data Fig. 3a).

Of the nine kataegic signatures, four have been reported previ-
ously, including two associated with APOBEC3 deaminases (SBS2 
and SBS13) and two associated with canonical or non-canonical AID 
activities (SBS84 and SBS85) (Fig. 2). SBS5 (clock-like mutagenesis) 
accounted for 15.0% of kataegis, with most events occurring in the 
vicinity of AID kataegis within B cell lymphomas. The remaining four 
kataegic signatures accounted for only 8.9% of kataegic mutations and 
included SBS7a/b (ultraviolet light), SBS9 (indirect mutations from 
AID) and SBS37 (unknown aetiology). Most kataegic signatures were 
strand-coordinated (Extended Data Fig. 3b). Some samples exhibited 
consistent whereas others exhibited distinct signatures of clustered 
and non-clustered mutagenesis (Extended Data Fig. 4). For example, 
in SP56533 (lung squamous cell carcinoma), most non-clustered and 
omikli substitutions were caused by tobacco signature SBS4, whereas 
kataegic events were generated by the APOBEC3 signatures (Extended 
Data Fig. 4a). By contrast, the pattern of non-clustered substitutions 
in SP24815 (glioblastoma) was due to clock-like signatures SBS1 and 

SBS5, whereas omikli and kataegic events were mostly attributable to 
APOBEC3 (Extended Data Fig. 4a).

The remaining ‘other’ clustered substitutions exhibited inconsistent 
VAFs that probably represent mutations at highly mutable genomic 
regions or the effects of co-occurring large mutational events such as 
copy number alterations (Extended Data Fig. 3d, Supplementary Table 6).

Different cancers showed distinct tendencies of clustered indel 
mutagenesis (Fig. 2). For instance, clustered indels attributed to ID3 
(tobacco smoking; characterized by 1-bp deletions) were found pre-
dominately in lung cancers and were significantly increased in smok-
ers compared to non-smokers (P = 0.0014) (Extended Data Figs. 3c, 
4b). Clustered indels due to signatures ID6 and ID8—both attributed 
to homologous recombination deficiency and characterized by long 
indels at microhomologies—were found in breast and ovarian cancers 
and were highly increased in cancers with known deficiencies in homolo-
gous recombination genes (P = 4.9 × 10−11) (Extended Data Figs. 3c, 4b).

Panorama of clustered driver mutations
The PCAWG project elucidated a constellation of mutations that puta-
tively drive cancer development10. Our current analysis reveals sig-
nificant enrichments of clustered substitutions and clustered indels 
amongst these driver mutations. Specifically, whereas only 3.7% of 
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cancer type for visualization (Methods).
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all substitutions and 0.9% of all indels are clustered events, they con-
tribute 8.4% and 6.9% of substitution and indel drivers, respectively 
(q-values < 1 × 10−5; Fisher’s exact tests) (Fig. 3a, b). Omikli accounted 
for 50.5% of all clustered substitution drivers, whereas DBSs, kataegis 
and other clustered events each contributed between 14% and 18% 
(Fig. 3c). Clustered driver substitutions varied greatly between genes 
and across different cancers (Fig. 3c, Extended Data Fig. 5a) with a 
2.4-fold enrichment of clustered events within oncogenes compared 
to tumour suppressors (P = 5.79 × 10−3) (Extended Data Fig. 5b, c).  
In some cancer genes, only a small percentage of driver events are 
due to clustered substitutions; examples include TP53 (4.5% clustered 
driver substitutions), KRAS (3.7%) and PIK3CA (2.2%). In other genes, 
most detected substitution drivers were clustered events; examples 
include: BTG1 (73.1%), SGK1 (66.6%), EBF1 (60.0%) and NOTCH2 (38.5%). 
Notably, the contribution from each class of clustered events varied 
across driver substitutions in different genes (Fig. 3c). For instance, 
ultraviolet-light-associated DBSs comprised 93% of clustered BRAF 
driver events, omikli contributed 63% of clustered BTG1 driver events 
and kataegis accounted for 100% of clustered NOTCH2 driver substi-
tutions (Fig. 3c). Similar behaviour was observed for clustered indel 

drivers, with 48.7% being single-base pair indels (Fig. 3d). In some 
cancer genes, clustered indel drivers were rare (for example, 2.4% of 
indel drivers in TP53 were clustered), whereas in others they were com-
mon (for example, 76.6% in ALB) (Fig. 3d). Clustered driver substitu-
tions were enriched in stop-lost mutations (q-value = 1.9 × 10−2) and 
depleted in stop-gained mutations (q-value = 3.3 × 10−3) when compared 
to non-clustered drivers (Fig. 3e). Furthermore, driver genes that con-
tained clustered events were often differentially expressed compared 
to those containing non-clustered events (Extended Data Fig. 5d). For 
instance, clustered events within CTNNB1 and BTG1 associated with an 
increased expression compared to both non-clustered and wild-type 
expression levels for each gene (q-values < 0.05). Opposite effects 
were observed in STAT6 and RFTN1 (q-values < 0.05). Collectively, these 
driver events were induced by the activity of multiple mutational pro-
cesses including exposure to ultraviolet light, tobacco smoke, plati-
num chemotherapy and AID and APOBEC3 activity; amongst others 
(Extended Data Fig. 5e).

The clinical utility of detecting clustered events in driver genes was 
evaluated by comparing the survival amongst individuals with clustered 
mutations versus individuals with non-clustered mutations within 
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each driver gene across all whole-exome-sequenced samples in TCGA.  
For each of these comparisons, we performed Cox regressions consider-
ing the effects from age and tumour mutational burden (TMB) while cor-
recting for cancer type and multiple hypothesis testing. These results 
were validated in targeted panel sequencing data from the Memorial 
Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer 
Targets (MSK-IMPACT) cohort42,43. These analyses revealed a significant 
difference in survival between individuals with clustered and individu-
als with non-clustered mutations detected in TP53, EGFR and BRAF. 
Specifically, individuals with clustered events within BRAF had a better 
overall survival compared to individuals with non-clustered events 
(q-values < 0.05) (Fig. 3f, g). Conversely, in both TCGA and MSK-IMPACT, 
individuals with clustered mutations in TP53 or EGFR exhibited a sig-
nificantly worse outcome compared to individuals with non-clustered 
mutations in each of these genes (q-values < 0.05) (Fig. 3f, g).

Kataegic events and focal amplifications
In each sample, kataegic mutations were separated into distinct events 
on the basis of consistent VAFs across adjacent mutations and IMD dis-
tances greater than the sample-dependent IMD threshold (Methods). 
Our analysis revealed that 36.2% of all kataegic events occurred within 
10 kb of a structural breakpoint but not on detected focal amplifications 
(Fig. 4a). In addition, 21.8% of all kataegic events occurred either on a 

detected focal amplification or within 10 kb of a focal amplification’s 
structural breakpoints: 9.6% on circular ecDNA, 6.3% on linear rear-
rangements, 3.3% within heavily rearranged events and 2.6% associated 
with breakage–fusion–bridge cycles (BFBs) (Fig. 4a). Finally, 42.0% of 
kataegic events were neither within 10 kb of a structural breakpoint 
nor on a detected focal amplification. Modelling the distribution of the 
distances between kataegic events and the nearest structural variations 
revealed a multi-modal distribution with three components (Fig. 4b): 
kataegis within 10 kb, around 1 Mb, or more than 1.5 Mb of a detected 
breakpoint. Of note, ecDNA-associated kataegis—termed kyklonas 
(Greek for cyclone)—had an average distance from the nearest break-
point of around 750 kb, with only 0.35% of kyklonic events occurring 
both on ecDNA and within 10 kb of a breakpoint (Fig. 4b). These results 
indicate that kyklonic events are not likely to have occurred because 
of structural rearrangements during the formation of ecDNA. In most 
cancer types, DBSs, MBSs, omikli and other cluster events were not 
found in the vicinity of structural variations (Extended Data Fig. 6a, b).

Recurrent kyklonic mutagenesis of ecDNA
Although only 9.6% of kataegic events occur within ecDNA regions, 
more than 30% of ecDNAs had one or more associated kyklonic events 
(Fig. 4c). The mutations within these ecDNA regions were dominated by 
the APOBEC3 patterns, which are characterized by strand-coordinated 
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C>G and C>T mutations in the TpCpW context and attributed to sig-
natures SBS2 and SBS13 (P <1 × 10−5) (Fig 4c, d, Extended Data Fig. 6c). 
These APOBEC3-associated events contributed 97.8% of all kyklonic 
events, whereas the remaining mutations were attributed to clock-like 
signature SBS5 (1.2%) and other signatures (1.0%) (Extended Data 
Fig. 6c). Furthermore, kyklonic events exhibited an enrichment of 
C>T and C>G mutations at APOBEC3B-preferred RTCA compared 
to APOBEC3A-preferred YTCA contexts (underlining reflects the 
mutated nucleotide)7, indicating that APOBEC3B is likely to have an 
important role in the mutagenesis of circular DNA bodies (Fig. 4e). 
Similar levels of enrichment for RTCA contexts were also observed in 
both non-ecDNA kataegis and non-structural variant (SV)-associated 
kataegis, suggesting that APOBEC3B generally gives rise to many 
of the strand-coordinated kataegic events (Extended Data Fig. 6d).  
An increase in the expression of APOBEC3B—but not APOBEC3A—
was observed in cancers with ecDNA compared to samples without 
ecDNA (3.1-fold; q-value < 1 × 10−5) (Fig. 4f). Within cancers containing 
ecDNA, no differences were observed in the expression of APOBEC3A or 
APOBEC3B between samples with and without kyklonic events (Fig. 4f).

More recurrent APOBEC3 kataegis was observed across circular 
ecDNA regions compared to other forms of structural variation (Fig. 5a). 
An average of 2.5 kyklonic events were observed within ecDNA regions 
(range: 0–64 kyklonic events; 0–505 mutations). Recurrent kyklo-
nas was widespread across cancer types (Extended Data Fig. 7a, b).  
For example, glioblastomas and sarcomas exhibited an average of 5 
and 86 kyklonic mutations, respectively. The average VAF of kyklonas 
was significantly lower than both non-ecDNA associated kataegis and 
all other clustered events (q-values < 1 × 10−5 Fig. 5b). Notably, a subset 
of kyklonas exhibited VAFs above 0.80, which is likely to reflect early 

mutagenesis of genomic regions that have subsequently amplified 
as ecDNA. Moreover, kyklonic events with high VAFs occurred more 
commonly on ecDNA that contained known cancer genes, suggest-
ing a mechanism of positive selection (Fig. 5b). Approximately 7.2% 
of kyklonas occurred early in the evolution of a given ecDNA popula-
tion within a tumour (VAF > 0.80), whereas the majority of kyklonic 
events (around 82.5%; VAF < 0.5) have probably occurred after clonal 
amplification by recurrent APOBEC3 mutagenesis.

Recurrent kyklonic events were increased within or near known 
cancer-associated genes including TP53, CDK4 and MDM2, amongst 
others (Fig. 5c). These recurrent kyklonas were observed across many 
cancers including glioblastomas, sarcomas, head and neck carcinomas 
and lung adenocarcinomas (Extended Data Fig. 7c, d). For example, in 
a sarcoma sample (SP121828), 10 distinct kyklonic events overlapped 
a single ecDNA region with recurrent APOBEC3 activity in proxim-
ity to MDM2, resulting in a missense L230F mutation (Extended Data 
Fig. 7c). The same ecDNA region contained additional kyklonic events 
occurring within intergenic regions that have distinguishable VAF dis-
tributions, implicating recurrent mutagenesis (Extended Data Fig. 7c). 
Similarly, two distinct kyklonic events occurred on an ecDNA containing 
EGFR, resulting in a missense mutation D191N within a head and neck 
cancer (Extended Data Fig. 7d). Of note, ecDNA regions with known 
cancer-associated genes had significantly higher numbers of kyklonic 
events and mutational burdens of kyklonas compared to ecDNA regions 
without any known cancer-associated genes (q-values < 1 × 10−5) 
(Fig. 5d). Furthermore, we observed a higher co-occurrence of kyklo-
nas with known cancer-associated genes, which were mutated 2.5 
times more than ecDNA without cancer-associated genes (P = 1.2 × 10−5; 
Fisher’s exact test). Overall, 41% of kyklonic events were found within 
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the footprints of known cancer driver genes (P < 1 × 10−5). These enrich-
ments cannot be accounted for either by an increase in the overall 
mutations or by an increase in the overall clustered mutations in these 
samples (Fig. 5e). To understand the functional effect of kyklonas, we 
annotated the predicted consequence of each mutation. In total, 2,247 
kyklonic mutations overlapped putative cancer-associated genes, of 
which 4.3% occur within coding regions (Extended Data Fig. 7e). Specifi-
cally, 63 resulted in missense mutations, 29 resulted in synonymous 
mutations, 4 introduced premature stop codons and 1 removed a stop 
codon (Supplementary Table 7). These downstream consequences of 
APOBEC3 mutagenesis suggest a contribution to the oncogenic evolu-
tion of specific ecDNA populations.

Validation of kyklonic events in ecDNA
Kyklonic events were further investigated across 3 additional inde-
pendent cohorts, including 61 sarcomas44, 280 lung cancers45 and 
186 oesophageal squamous cell carcinomas46. Comparable rates of 
clustered mutagenesis were found for both substitutions and indels 
to the rates reported in PCAWG, with a 2.4- and 5.0-fold enrichment of 
clustered substitutions and indels within driver events, respectively 
(Extended Data Fig. 8a). Across the three cohorts, 31% of samples with 
ecDNA exhibited kyklonas within the sarcomas, 14% within the oesopha-
geal cancers and 28% within the lung cancers, supporting the rates 
observed in PCAWG (Fig. 4c, Extended Data Figs. 7b, 8c). Similar to the 
rate observed in PCAWG (36.2%), approximately 30.1% of all kataegis 
occurred within 10 kb of the nearest breakpoint in the validation cohort 
(Extended Data Fig. 9a). In addition, only 0.34% of kyklonic events in 
the validation dataset occurred closer to SVs than expected by chance, 
which closely resembles the observations in the PCAWG data (0.35%) 
(Extended Data Fig. 9b). Kyklonic mutations were predominantly attrib-
uted to APOBEC3 signatures SBS2 and SBS13 (P < 1 × 10−5) (Extended 
Data Fig. 8b, Methods) with an enrichment of mutations at the RTCA 
context supporting the role of APOBEC3B (Extended Data Fig. 8d).  
A widespread recurrence of kyklonic events was observed across the 
sarcomas, oesophageal and lung cancers, with 45%, 28% and 46% of 
samples with ecDNA containing multiple, distinct kyklonic events 
(Extended Data Fig. 8e). An example from each cohort was selected 
to illustrate multiple kyklonic events occurring within single ecDNAs, 
validating the recurrent APOBEC3 hypermutation of ecDNA (Extended 
Data Fig. 10).

Discussion
Clustered mutagenesis in cancer can occur through different mutational 
processes, with AID and APOBEC3 deaminases having the most promi-
nent role. In addition to enzymatic deamination, other endogenous and 
exogenous sources imprint many of the observed clustered indels and 
substitutions. A multitude of mutational processes can give rise to omikli 
events, including tobacco carcinogens and exposure to ultraviolet light. 
Clustered substitutions and indels were highly enriched in driver events 
and associated with differential gene expression, implicating them in 
cancer development and cancer evolution. Some clustered mutational 
signatures are associated with known cancer risk factors or the activ-
ity or failure of DNA repair processes. Notably, clustered mutations in 
TP53, EGFR and BRAF associated with changes in overall survival and 
can be detected in most types of sequencing data, including clinically 
actionable targeted panels such as MSK-IMPACT.

A large proportion of kataegic events occur within 10 kb of detected 
SV breakpoints with a mutational pattern, suggesting the activity of 
APOBEC3. Multiple distinct kataegic events, independent of detected 
breakpoints, were observed on circular ecDNA; such events—termed 
kyklonas—suggest recurrent APOBEC3 mutagenesis. The circular topol-
ogy of ecDNAs47 and their rapid replication patterns are reminiscent 
of the structure and behaviour of the circular genomes of several 
double-stranded-DNA based, pathogens including herpesviruses, 

papillomaviruses and polyomaviruses32–35. Previous pan-virome stud-
ies have shown that these double-stranded DNA viral genomes often 
manifest mutations from APOBEC3 enzymes48–50. As such, recurrent 
APOBEC3 mutagenesis on ecDNA is likely to be representative of an 
antiviral response in which the ecDNA viral-like structure is treated as an 
infectious agent and attacked by APOBEC3 enzymes. ecDNAs contain a 
plethora of cancer-associated genes and are responsible for many gene 
amplification events that can accelerate tumour evolution. Repeated 
mutagenic attacks of these ecDNAs reveal functional effects within 
known oncogenes and implicate additional modes of oncogenesis that 
may ultimately contribute to subclonal tumour evolution, subsequent 
evasion of therapy and clinical outcome. Further investigations with 
large-scale clinically annotated whole-genome-sequenced cancers 
are required to fully understand the clinical implications of clustered 
mutations and kyklonas.
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Methods

Data sources
Somatic variant calls of single-base substitutions, small indels and 
structural variations were downloaded for the 2,583 white-listed 
whole-genome-sequenced samples from PCAWG along with the cor-
responding list of consensus driver events10. Epidemiological and clini-
cal features for all available samples were downloaded from the official 
PCAWG release (https://dcc.icgc.org/releases/PCAWG). The collection 
of whole-exome-sequenced samples from TCGA along with all available 
clinical features were downloaded from the Genomic Data Commons 
(GDC; https://gdc.cancer.gov/). The MSK-IMPACT Clinical Sequencing 
Cohort43 composed of 10,000 clinical cases was downloaded from 
cBioPortal (https://www.cbioportal.org/study/summary?id=msk_
impact_2017). The subclassification of focal amplifications comprised 
circular ecDNA, linear amplifications, BFBs and heavily rearranged 
events, and their corresponding genomic locations were obtained for 
a subset of samples (n = 1,291) as reported34.

Experimental models used to validate clustered events were derived 
from previous studies using primary Hupki mouse embryonic fibro-
blasts (MEFs) exposed to ultraviolet light41, human induced pluripo-
tent stem cells (iPS cells) exposed to benzo[a]pyrene40, and a clonally 
expanded BT-474 human breast cancer cell line with episodically active 
APOBEC339.

Independent cohorts used to validate kyklonic events were col-
lected from multiple sources. The 61 undifferentiated sarcomas44 
and 187 high-confidence oesophageal squamous cell carcinomas46 
were downloaded from the European Genome-phenome Archive 
(EGAD00001004162 and EGAD00001006868, respectively).  
The 280 lung adenocarcinomas45 were downloaded from dbGaP under 
the accession number (phs001697.v1.p1). Clustered mutations in valida-
tion samples were analysed using the same approach as the one used 
in the original cohort.

Detection of clustered events
SigProfilerSimulator (v.1.0.2) was used to derive an IMD cut-off51 that 
is unlikely to occur by chance based on the TMB and the mutational 
patterns for a given sample. Specifically, each tumour sample was 
simulated while maintaining the sample’s mutational burden on each 
chromosome, the ±2 bp sequence context for each mutation and the 
transcriptional strand bias ratios across all mutations. All mutations 
in each sample were simulated 100 times and the IMD cut-off was cal-
culated such that 90% of the mutations below this cut-off could not 
appear by chance (q-value < 0.01). For example, in a sample with an 
IMD threshold of 500bp, one may observe 1,000 mutations within 
this threshold with no more than 100 mutations expected based on 
the simulated data (q-value < 0.01). P values were calculated using 
z-tests by comparing the number of real mutations and the distribu-
tion of simulated mutations that occur below the same IMD threshold.  
A maximum cut-off of 10 kb was used for all IMD thresholds. By generat-
ing a background distribution that reflects the random distribution of 
events used to reduce the false positive rate, this model also considers 
regional heterogeneities of mutation rates, partially attributed to rep-
lication timing and expression, and variances in clonality by correct-
ing for mutation-rich regions and mutation-poor regions within 1-Mb 
windows. The 1-Mb window size has been used and established as an 
appropriate scale when considering the variability in mutation rates 
associated with chromatin structure, replication timing and genome 
architecture14,52,53. The 1-Mb window ensures that subsequent muta-
tions are likely to have occurred as single events using a maximum 
cut-off of 0.10 for differences in the VAFs. The regional IMD cut-off 
was determined using a sliding window approach that calculated the 
fold enrichment between the real and simulated mutation densities 
within 1-Mb windows across the genome. The IMD cut-offs were further 
increased, for regions that had higher than ninefold enrichments of 

clustered mutations and where more than 90% of the clustered muta-
tions were found within the original data, to capture additional clus-
tered events while maintaining the original criteria (less than 10% of the 
mutations below this cut-off appear by chance; q-value < 0.01). Last, as 
VAF of mutations may confound the definition of clustered events in 
ecDNA, we calculated the distribution of inter-event distances within 
recurrently mutated ecDNA while disregarding the VAF of individual 
mutations. This resulted in the exact same separation of kataegic events 
using only the inter-event distances as a criterion for the grouping of 
mutations into a single event.

Subsequently, all clustered mutations with consistent VAFs were 
classified into one of four categories (Extended Data Fig. 1a). Two adja-
cent mutations with an IMD of 1 were classified as DBSs. Three or more 
adjacent mutations each with an IMD of 1 were classified as MBSs. Two 
or three mutations with IMDs less than the sample-dependent threshold 
and with at least a single IMD greater than 1 were classified as omikli. 
Four or more mutations with IMDs less than the sample-dependent 
threshold and with at least a single IMD greater than 1 were classified as 
kataegis. A cut-off of four mutations for kataegis was chosen by fitting a 
Poisson mixture model to the number of mutations involved in a single 
event across all extended clustered events excluding DBSs and MBSs 
(Supplementary Note 1). This model comprised two distributions with 
C1 = 2.08 and C2 = 4.37 representing omikli and kataegis, respectively.  
A cut-off of four mutations was used for kataegis on the basis of a con-
tribution of greater than 95% from the kataegis-associated distribution 
with events of four or more mutations. Note that there is certain ambigu-
ity for events with two or three mutations. Although the majority of these  
events are omikli, some of these events are likely to be short kataegic 
events (Supplementary Note 1). All remaining clustered mutations 
with inconsistent VAFs were classified as other. Clustered indels were 
not classified into different classes. We also performed additional 
quality-checks to ensure that the majority of clustered indels were 
mapped to high confidence regions of the genome (Supplementary 
Fig. 2). Specifically, all clustered indels were aligned against a consensus 
list of blacklisted genomic regions developed by ENCODE54 revealing 
that only 0.5% of all clustered indels overlapped regions with low map-
pability scores.

Clustered mutational signatures analysis
The clustered mutational catalogues of the examined samples were 
summarized in SBS288 and ID83 matrices using SigProfilerMatrix-
Generator55 (v.1.2.0) for each tissue type and each category of clus-
tered events. For example, six matrices were constructed for clustered 
mutations found in Breast-AdenoCA: one matrix for DBSs, one matrix 
for MBSs, one matrix for omikli, one matrix for kataegis, one matrix 
for other clustered substitutions and one matrix for clustered indels. 
The SBS288 classification considers the 5′ and 3′ bases immediately 
flanking each single-base substitution (referred to using the pyrimi-
dine base in the Watson–Crick base pair) resulting in 96 individual 
mutation channels. In addition, this classification considers the strand 
orientation for mutations that occur within genic regions resulting in 
three possible categories: (1) transcribed; pyrimidine base occurs on 
the template strand; (2) untranscribed; pyrimidine base occurs on the 
coding strand; or (3) non-transcribed; pyrimidine base occurs in an 
intergenic region. Mutations in genic regions that are bidirectionally 
transcribed were evenly split amongst the coding and template strand 
channels. Combined, this results in a classification consisting of 288 
mutation channels, which were used as input for de novo signature 
extraction of clustered substitutions. The ID83 mutational classifica-
tion has previously been described55.

Mutational signatures were extracted from the generated matri-
ces using SigProfilerExtractor (v.1.1.0), a Python-based tool that uses 
non-negative matrix factorization to decipher both the number of 
operative processes within a given cohort and the relative activities 
of each process within each sample56. The algorithm was initialized 
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using random initialization and by applying multiplicative updates 
using the Kullback–Leibler divergence with 500 replicates. Each 
de novo extracted mutational signature was subsequently decom-
posed into the COSMIC (v.3) set of signatures (https://cancer.sanger.
ac.uk/signatures/) requiring a minimum cosine similarity of 0.80 for 
all reconstructed signatures. All de novo extractions and subsequent 
decomposition were visually inspected and, as previously done1, man-
ual corrections were performed for 2.2% of extractions (4 out of 180 
extractions) in which the total number of operative signatures was 
adjusted ±1. Consistent with prior visualizations10, we have included 
all cancer types within the PCAWG cohort, which may comprise as few 
as one sample for certain cancer types. Similarly, consistent with prior 
visualizations1, decomposed signature activity plots required that each 
cancer type have more than 2 samples and used mutation thresholds 
for each clustered category; 25 mutations per sample were required for 
DBSs, omikli events and other clustered mutations; 15 mutations per 
sample were required for MBSs and kataegic events; and 10 mutations 
were required per sample for clustered indels.

Experimental validation
A subset of clustered mutational signatures was validated using previ-
ously sequenced in vitro cell line models. As done for PCAWG samples, 
we generated a background model using SigProfilerSimulator51 to 
calculate the clustered IMD cut-off for each sample and partitioned 
each substitution into the appropriate category of clustered events. 
Mutational spectra were generated for each subclass within each sam-
ple using SigProfilerMatrixGenerator55 and were compared against the 
de novo signatures extracted from human cancer. The cosine similarity 
between the in vitro mutational spectra and de novo observed clustered 
signatures was calculated to assess the degree of similarity. The average 
cosine similarity between two random non-negative vectors is 0.75, and 
the cosine similarities above 0.81 reflect P values below 0.01 (ref. 51).

Associations with cancer risk factors
Homologous recombination (HR) deficiency was defined for breast 
cancers using the status of BRCA1, BRCA2, RAD51C and PALB257. Samples 
with a germline, somatic or epigenetic alteration in one of these genes 
were considered HR-deficient, whereas samples without any known 
alterations in these genes were considered HR-proficient. The number of 
clustered indels was compared between HR-deficient and HR-proficient 
samples. The smoking status of lung cancers was determined using the 
clinical annotation from TCGA (https://portal.gdc.cancer.gov/reposi-
tory). The number of clustered indels associated with tobacco smoking 
(ID6) was compared between samples annotated as lifelong non-smokers 
and samples annotated as current and reformed smokers. The status of 
alcohol consumption was determined using the annotations from the 
official PCAWG release (https://dcc.icgc.org/releases/PCAWG). The total 
number of clustered indels was compared in samples annotated with no 
alcohol consumption and those annotated as daily and weekly drinkers.

Expression of driver genes
All RNA-seq expression data were downloaded as a part of the official 
PCAWG release (https://dcc.icgc.org/releases/PCAWG). The relative 
expression data found within this release were normalized using FPKM 
normalization and upper quartile normalization. The relative expres-
sion of a gene was compared between those containing clustered or 
non-clustered events. Each distribution was then normalized to the 
average expression of the wild-type gene. Only genes with at least 10 
total events (that is, clustered and non-clustered mutations) including 
at least 5 clustered events were considered for examination.

SVs and clustered events
The distance to the nearest structural variation breakpoint was calcu-
lated for each mutation in each subclass using the minimum distance 
to the nearest adjacent upstream or downstream breakpoint. Each 

distribution was modelled using a Gaussian mixture with an automatic 
selection criterion for the number of components ranging between one 
and five components using the minimum Bayesian information criteria 
(BIC) across all iterations. Modelling of kataegic events resulted in an 
optimal fit of three components, which was used to separate kataegic 
substitutions into SV-associated and non-SV associated mutations. 
DBSs and MBSs were both modelled using a single Gaussian distribu-
tion relating to non-SV associated mutations, whereas omikli and other 
clustered mutations were modelled using a mixture of two components, 
probably reflecting leakage of smaller kataegic events contributing 
to a weak SV-associated distribution. To account for the frequency of 
breakpoints across each sample, we normalized the minimum distance 
of each mutation to the nearest SV by calculating the expected distance 
between a mutation and SV for each sample using the total number of 
breakpoints and the overall length of a given chromosome (Extended 
Data Fig. 9a, b). After normalizing the kataegic events, we observed an 
optimal solution of two components with one SV-associated distribu-
tion (on average each mutation occurs within one-thousandth of the 
expected distance to nearest structural variation) and one non-SV asso-
ciated distribution (on average occurring within the expected distance 
to the nearest structural variation). The normalized kyklonic events are 
consistent with the non-SV associated distribution reflecting kataegic 
events that occur on ecDNA typically of lengths 1–10 Mb (ref. 35).

APOBEC3A and APOBEC3B enrichment analysis
The enrichment score of RTCA and YTCA penta-nucleotides quantifies 
the frequency for which each TpCpA>TpKpA mutation occurs at either 
an RTCA or a YTCA context. To account for motif availability, this score 
is calculated using the ±20 bp sequence context around each mutation 
and normalized by the number of cytosine bases and C>N mutations 
within the set of 41-mers surrounding each mutation of interest7.

APOBEC3 gene expression and kyklonas
All RNA-seq expression data were downloaded as a part of the official 
PCAWG release (https://dcc.icgc.org/releases/PCAWG). The relative 
expression data found within this release were normalized using FPKM 
normalization and upper quartile normalization. The APOBEC3A/B 
normalized expression was compared between samples containing 
ecDNA versus samples with no detected ecDNA and between samples 
with kyklonas and without kyklonas. All P values were generated using 
a Mann–Whitney U-test and were corrected for multiple hypothesis 
testing using the Benjamini–Hochberg FDR procedure.

Circular ecDNA and kataegis
The collection of ecDNA ranges was intersected with the catalogue 
of clustered mutations, which was used to determine the overlapped 
mutational burden for each subclass of clustered event and the muta-
tional spectra of overlapping kataegic events. Enrichments of events 
were calculated using statistical background models generated using 
SigProfilerSimulator51 that shuffled the dominant mutation in each 
clustered event across the genome (that is, the most frequent muta-
tion type in a single event). The decomposed kyklonic mutational 
spectra were generated using the decomposition module within 
SigProfilerExtractor56. Only mutational signatures that increased 
the overall cosine similarity by at least 0.01 were used. In both the 
original and validation cohorts, SBS2 and SBS13 were sufficient to 
explain the kyklonic mutational spectra with no other known muta-
tional signature increasing the cosine similarity by more than 0.01. 
Comparisons between ecDNA with and without cancer genes were 
performed using the set of cancer genes from the Cancer Gene Cen-
sus (CGC)58. All statistical comparisons and P values were calculated 
using a two-tailed Mann–Whitney U-test unless otherwise specified. 
For each set of tests, P values were corrected for multiple hypoth-
esis testing using the Benjamini–Hochberg FDR procedure. The 
predicted effect of each overlapping variant was determined using 
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ENSEMBL’s Variant Effect Predictor tool by reporting only the most 
severe consequence59.

Overall survival and clustered mutations
All survival analyses, including the generation of Kaplan–Meier 
curves, Cox regressions and log-rank tests, were performed using 
the Lifelines Python package (v.0.24.4). Across the 30 distinct 
whole-genome-sequenced cancer types included in the PCAWG study, 
only 6 cancer types contained enough samples to examine the asso-
ciations between survival and overall number of clustered mutations. 
The sufficient sample size criteria required more than 50 samples with 
survival end-points with at least 30 of the samples with an observed 
clustered event. Each cancer type was analysed separately by comparing 
the survival of samples with a high clustered mutational burden (top 
80th percentile across a given cancer type) to the survival of samples 
with a low clustered mutational burden (bottom 20th percentile across 
a given cancer type).

Analysis of whole-exome-sequenced samples from TCGA was altered 
to reflect the limited resolution for identifying clustered mutations 
within the exome. Specifically, SigProfilerSimulator (v.1.0.2)51 was used 
to derive an IMD cut-off for each sample based on the TMB within the 
exome and the mutational patterns for a given sample. Mutations were 
randomly shuffled while maintaining the mutational burden within 
the exome of each chromosome, the ±2 bp sequence context for each 
mutation and the transcriptional strand bias ratios across all mutations. 
Each sample was simulated 100 times and an IMD cut-off was calculated 
using the same methods as outlined for the detection of clustered 
events within PCAWG. Owing to the limited number of detected events, 
22 cancer types had sufficient data to perform survival analysis. Each 
cancer type was analysed separately by comparing samples with at 
least a single clustered event to samples with no detected clustered 
events within the exome.

For both PCAWG and TCGA analyses, survival distributions within 
a given cancer type were compared using a log-rank test. Cox regres-
sions were performed to determine hazards ratios and to correct for 
age and total mutational burden. All P values were also corrected 
for multiple hypothesis testing using the Benjamini–Hochberg FDR 
procedure.

To investigate differential survival associated with the detection of 
clustered events within cancer driver genes, Kaplan–Meier survival 
curves were compared between individuals with clustered versus 
non-clustered mutations within a given cancer driver gene. The dis-
tributions were compared using a log-rank test. Cox regressions were 
performed to determine the hazards ratios and to correct for age, 
total mutational burden and cancer type across TCGA. Cox regres-
sions performed for the MSK-IMPACT cohort were corrected for total 
mutational burden and cancer type. No corrections were performed for 
age as these metadata were not available for the MSK-IMPACT cohort.  
All P values were also corrected for multiple hypothesis testing using 
the Benjamini–Hochberg FDR procedure.

Validation of kyklonas in three cohorts
All three validation cohorts were analysed analogous to the PCAWG 
cohorts. Specifically, clustered mutations were classified by calculating 
a sample-dependent IMD threshold for clustered versus non-clustered 
mutations using a background model generated by SigProfilerSimula-
tor51. All clustered mutations were subclassified into DBS, MBS, omikli, 
kataegis or other mutations. AmpliconArchitect (v.1.2) was used to 
determine regions of focal amplifications60, which were used for sub-
sequent validation of kyklonic events by overlapping kataegic events 
with all detected focal amplifications. The decomposed kyklonic muta-
tional spectra were generated using the decomposition module within 
SigProfilerExtractor56. Only mutational signatures that increased the 
overall cosine similarity by at least 0.01 were used. In both the original 
and validation cohorts, SBS2 and SBS13 were sufficient to explain the 

kyklonic mutational spectra with no other known mutational signature 
increasing the cosine similarity by more than 0.01.

Cancer-type abbreviations
Biliary-AdenoCA, biliary adenocarcinoma; Bladder-TCC, bladder 
transitional cell carcinoma; Bone-Epith, bone epithelioid; Bone-Lei-
omyo, bone leiomyosarcoma; Bone-Osteosarc, bone osteosarcoma; 
Breast-AdenoCA, breast adenocarcinoma; Breast-LobularCA, breast 
lobular carcinoma; CNS-GBM, glioblastoma (central nervous system); 
CNS-Medullo, medulloblastoma (central nervous system); CNS-Oligo, 
oligodendroglioma (central nervous system); CNS-PiloAstro, pilo-
cytic astrocytoma (central nervous system); Cervix-AdenoCA, cer-
vix adenocarcinoma; Cervix-SCC, cervix squamous cell carcinoma; 
ColoRect-AdenoCA, colorectal adenocarcinoma; Head-SCC, head 
and neck squamous cell carcinoma; Kidney-ChRCC, chromophobe 
renal cell carcinoma; Kidney-RCC, renal cell carcinoma; Liver-HCC, 
hepatocellular carcinoma; Lung-AdenoCA, lung adenocarcinoma; 
Lung-SCC, lung squamous cell carcinoma; Lymph-BNHL, B-cell non-
Hodgkin lymphoma; Lymph-CLL, chronic lymphocytic leukaemia; 
Lymph-NOS, metastatic lymphoma; Myeloid-AML, acute myeloid leu-
kaemia; Myeloid-MPN, myeloproliferative neoplasm; Oeso-AdenoCA, 
oesophageal adenocarcinoma; Ovary-AdenoCA, ovary adenocarci-
noma; Panc-AdenoCA, pancreatic adenocarcinoma; Panc-Endocrine, 
pancreatic neuroendocrine carcinoma; Prost-AdenoCA, prostate 
adenocarcinoma; Skin-Melanoma, malignant melanoma; Stomach-
AdenoCA, stomach adenocarcinoma; Thy-AdenoCA, thyroid adeno-
carcinoma; Uterus-AdenoCA, uterine adenocarcinoma.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
No data were generated specifically for this study. All data were 
and can be downloaded from the appropriate links, repositories 
and references. Specifically, for the discovery cohort, all data and 
metadata were obtained from the official PCAWG release (https://
dcc.icgc.org/releases/PCAWG). All data and metadata for TCGA 
samples were obtained from the GDC (https://gdc.cancer.gov/). 
Genomics data for clonally expanded cell lines were downloaded 
from the European Genome-phenome Archive (EGAD00001004201, 
EGAD00001004203 and EGAD00001004583). For the three valida-
tion cohorts, datasets were downloaded as submitted by the original 
publications and genomics data were downloaded from their respective 
repositories: EGAD00001004162 for 61 undifferentiated sarcomas44 
(European Genome-phenome Archive); EGAD00001006868 for 187 
high-confidence oesophageal squamous cell carcinomas46 (Euro-
pean Genome-phenome Archive); and phs001697.v1.p1 for 280 lung 
adenocarcinomas45 (dbGaP). Somatic mutations and metadata for the 
MSK-IMPACT Clinical Sequencing Cohort composed of 10,000 clinical 
cases42 were downloaded from cBioPortal (https://www.cbioportal.
org/study/summary?id=msk_impact_2017).

Code availability
The SigProfiler compendium of tools are developed as Python pack-
ages and are freely available for installation through PyPI or directly 
through GitHub (https://github.com/AlexandrovLab/). For all tools, 
each package is fully functional, free and open sourced distributed 
under the permissive 2-Clause BSD License and is accompanied by 
extensive documentation: (1) SigProfilerMatrixGenerator55 (v.1.2.0; 
https://github.com/AlexandrovLab/SigProfilerMatrixGenerator); (2) 
SigProfilerSimulator51 (v.1.0.2; https://github.com/AlexandrovLab/
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SigProfilerSimulator); and (3) SigProfilerExtractor56 (v.1.1.0; https://
github.com/AlexandrovLab/SigProfilerExtractor). Each SigProfiler 
tool also has an R wrapper available for installation through the GitHub 
repositories. AmpliconArchitect34 (v.1.2) is also freely available and 
can downloaded from https://github.com/virajbdeshpande/Ampli-
conArchitect. The core computational pipelines used by the PCAWG 
Consortium for alignment, quality control and variant calling are 
available to the public at https://dockstore.org/search?search=pcawg 
under the GNU General Public License v.3.0, which allows for reuse 
and distribution.
 
51.	 Bergstrom, E. N., Barnes, M., Martincorena, I. & Alexandrov, L. B. Generating realistic null 

hypothesis of cancer mutational landscapes using SigProfilerSimulator. BMC Bioinf. 21, 
438 (2020).

52.	 Hess, J. M. et al. Passenger hotspot mutations in cancer. Cancer Cell 36, 288–301 (2019).
53.	 Polak, P. et al. Cell-of-origin chromatin organization shapes the mutational landscape of 

cancer. Nature 518, 360–364 (2015).
54.	 Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE Blacklist: identification of 

problematic regions of the genome. Sci. Rep. 9, 9354 (2019).
55.	 Bergstrom, E. N. et al. SigProfilerMatrixGenerator: a tool for visualizing and exploring 

patterns of small mutational events. BMC Genomics 20, 685 (2019).
56.	 Islam, S. M. A. et al. Uncovering novel mutational signatures by de novo extraction with 

SigProfilerExtractor. Preprint at https://doi.org/10.1101/2020.12.13.422570 (2020).
57.	 Polak, P. et al. A mutational signature reveals alterations underlying deficient 

homologous recombination repair in breast cancer. Nat. Genet. 49, 1476–1486 (2017).
58.	 Sondka, Z. et al. The COSMIC Cancer Gene Census: describing genetic dysfunction 

across all human cancers. Nat. Rev. Cancer 18, 696–705 (2018).
59.	 McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 122 (2016).
60.	 Deshpande, V. et al. Exploring the landscape of focal amplifications in cancer using 

AmpliconArchitect. Nat. Commun. 10, 392 (2019).

Acknowledgements E.N.B. and L.B.A. were supported by the Cancer Research UK Grand 
Challenge Award C98/A24032 as well as US National Institute of Health (NIH) grants 
R01ES030993-01A1 and R01ES032547. L.B.A. is an Abeloff V Scholar and he was also 
supported by an Alfred P. Sloan Research Fellowship. Research at the University of California 

San Diego was also supported by a Packard Fellowship for Science and Engineering to L.B.A. 
N.P. is funded through a Cancer Research UK grant (grant no. 18387) and is supported by the 
UCLH Biomedical Research Centre and the Cancer Research UK Experimental Cancer Centre. 
C.D.S. is funded through Cancer Research UK and the Neurofibromatosis Research Initiative 
(NFRI) at Boston Children’s Hospital–GeM consortium. M.P. is supported by a European 
Molecular Biology Organization (EMBO) Long-Term Fellowship (ALTF 760-2019). V.B. and J.L. 
were supported in part by grants U24CA264379 and R01GM114362 from the NIH. P.S.M. is 
supported in part by grants U24CA264379 and RO1CA238249 from the NIH. Cancer research 
in the R.S.H. laboratory is supported by NCI grant P01CA234228. R.S.H. is the Margaret Harvey 
Schering Land Grant Chair for Cancer Research, a Distinguished University McKnight Professor 
and an Investigator of the Howard Hughes Medical Institute. The funders had no roles in study 
design, data collection and analysis, decision to publish or preparation of the manuscript.

Author contributions E.N.B. and L.B.A. designed the overall study. E.N.B. performed all 
genomics analyses with help from J.L., M.P., A.K., M.B., T.Z., C.D.S., N.P., M.T.L., V.B., P.S.M., 
R.S.H. and L.B.A. Specifically, J.L., V.B., A.K. and P.S.M. assisted in analysis and discussion of 
ecDNA. M.P. and R.S.H. aided in the analysis and interpretation of APOBEC3 mutational 
signatures. A.K., M.B., T.Z., C.D.S., N.P. and M.T.L. gathered the validation cohorts and helped 
with the subsequent computational validation analyses. E.N.B. performed all clinical 
association analysis and all analysis of gene expression. E.N.B. and L.B.A. wrote the manuscript 
with help and input from all other authors. All authors read and approved the final manuscript.

Competing interests M.P. is a shareholder in Vertex Pharmaceuticals. V.B. is a co-founder, 
consultant and Scientific Advisory Board member of, and has equity interest in, Boundless Bio, 
and Abterra. The terms of this arrangement have been reviewed and approved by the 
University of California San Diego in accordance with its conflict-of-interest policies. E.N.B. 
and L.B.A. declare filing a provisional patent application for using clustered mutations as 
clinical prognostic biomarkers in cancer. P.S.M. is a co-founder of Boundless Bio. He has equity 
in the company and he chairs the Scientific Advisory Board, for which he is compensated. 
L.B.A. is an inventor on US patent no. 10,776,718 for source identification by non-negative 
matrix factorization. All other authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at 
https://doi.org/10.1038/s41586-022-04398-6.
Correspondence and requests for materials should be addressed to Ludmil B. Alexandrov.
Peer review information Nature thanks the anonymous reviewers for their contribution to the 
peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://github.com/AlexandrovLab/SigProfilerSimulator
https://github.com/AlexandrovLab/SigProfilerExtractor
https://github.com/AlexandrovLab/SigProfilerExtractor
https://github.com/virajbdeshpande/AmpliconArchitect
https://github.com/virajbdeshpande/AmpliconArchitect
https://dockstore.org/search?search=pcawg
https://doi.org/10.1101/2020.12.13.422570
https://doi.org/10.1038/s41586-022-04398-6
http://www.nature.com/reprints


Extended Data Fig. 1 | Identification and clinical associations of clustered 
events. a, Schematic depiction for separating clustered mutations for a 
sample. b, Subclassification of clustered substitutions and indels. Expected 
IMD derived using steps 2 and 3 (a). c, Distribution of indels present in a single 
clustered event. d, Distribution of clustered substitutions (left) and indels 
(right) across cancers with less than 10 samples subclassified into different 
categories. e, Correlations between TMB of each sample, the TMB within the 
exome, or the TMB for each class of clustered substitutions (left) and indels 
(right). f, Distribution of VAFs for all clustered substitution classes (left; DBS: 
1,215 samples; MBS: 851; omikli:1,466; kataegis: 1,108; other: 335) with the 
average fold enrichment compared against non-clustered mutations (right). 
For each boxplot, the middle line reflects the median, the lower and upper 
bounds correspond to the first and third quartiles, and the lower and upper 

whiskers extend from the box by 1.5x the inter-quartile range (IQR). g, Kaplan–
Meier curves between samples with high (top 80th percentile) and low (bottom 
20th percentile) clustered substitution (left) or indel (right) burdens in PCAWG 
ovarian cancer. h, Cox regressions performed for PCAWG cancer types while 
correcting for age (n = 20 upper and n = 21 lower clustered substitutions; n = 49 
upper and n = 49 lower clustered indels). i, Kaplan–Meier survival curves for 
TCGA cancer types with a differential patient outcome associated with the 
detection of any clustered mutations. j, k, Cox regressions performed for 
TCGA samples while correcting for age ( j) and total mutational burden (k) (OV: 
n = 111 upper, n = 159 lower clustered substitutions; UCEC: n = 322 upper, n = 64 
lower; ACC: n = 24 upper, n = 67 lower). PCAWG ovarian cancers were included 
in k. Centre of measure for each Cox regression reflects the log10(Hazards 
ratios) with the 95% confidence intervals in h–k).
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Extended Data Fig. 2 | De novo signatures of DBS and MBS signatures. a, The 
activity of DBS de novo signatures (top) and the corresponding signatures 
extracted from prostate, skin, stomach, and uterine cancers that could not be 
accurately reconstructed using known COSMIC mutational signatures 

(bottom; Methods). b, The activity of MBS de novo signatures (top) and the 
corresponding signatures extracted from colon, oesophagus, and head and 
neck cancers that could not be accurately reconstructed using known COSMIC 
mutational signatures (bottom; Methods).



Extended Data Fig. 3 | Experimental validation and epidemiological 
associations of clustered mutational processes. a, Experimental validation 
of three omikli processes. Specifically, APOBEC3-associated omikli were 
validated using a clonally expanded BT-474 breast cancer cell line (top), omikli 
events resulting from exposure to benzo[a]pyrene were validated using iPS 
cells (middle), and omikli events resulting from exposure to ultraviolet light 
were validated using iPS cells (bottom). b, Mutational processes of 
strand-coordinated kataegic events. c, Epidemiological associations 
comparing the ratio of clustered TMB to the total TMB for a given sample 
between: drinkers (n = 25) and non-drinkers (n = 61); smokers (n = 68) and 

non-smokers (n = 11); homologous-recombination deficient (HR-deficient; 
n = 25) and homologous-recombination proficient samples (HR-proficient; 
n = 64). For each boxplot, the middle line reflects the median, the lower and 
upper bounds of the box correspond to the first and third quartiles, and the 
lower and upper whiskers extend from the box by 1.5x the inter-quartile range 
(IQR). P-values were calculated using a two-tailed Mann–Whitney U-test.  
d, Mutational processes of clustered events with inconsistent VAFs classified 
as other clustered substitutions. A minimum of two samples are required per 
cancer type for visualization (Methods).
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Extended Data Fig. 4 | Examples of clustered mutational signatures. a, Two 
samples depicting the intra-mutational distance (IMD) distributions of 
substitutions across genomic coordinates, where each dot represents the 
minimum distance to adjacent mutations for a selected mutation coloured 
based on the corresponding subclassification of event (rainfall plot; left). The 
red lines depict the sample-dependent IMD threshold for each sample. Specific 

clustered mutations may be above this threshold based on corrections for 
regional mutation density. The mutational spectra for the different catalogues 
of clustered and non-clustered substitutions for each sample (right; MBS are 
not shown). b, Two samples illustrating the IMD distributions of indels across 
the given genomes, with the IMD indel thresholds shown in red (left). The 
non-clustered and clustered indel catalogues for each sample (right).



Extended Data Fig. 5 | Mutational processes of clustered driver events.  
a, The percentage of clustered driver substitutions and indels within each 
cancer type. All samples 2,583 whole-genome sequenced samples from 
PCAWG with a detected driver event are included; however, cancer types with 
fewer than 10 samples are not presented. b, The proportion of clustered driver 
mutations per cancer gene compared between oncogenes (n = 19 genes) versus 
tumour suppressor genes (n = 30 genes) and genes with high numbers of 
isoforms (n = 17) versus genes with low numbers of isoforms (n = 23; upper and 
lower quartiles of isoforms across all cancer drivers). c, The proportion of 
clustered driver mutations for a given subclass per cancer gene compared 
between oncogenes (n = 17 genes with clustered substitutions and n = 13 with 
for clustered indels) versus tumour suppressor genes (n = 28 genes with 
clustered substitutions and n = 70 genes with clustered indels). d, The relative 

expression of driver genes containing clustered (copper) versus non-clustered 
events (green). All expression values were normalized using FPKM 
normalization and upper quartile normalization obtained from the official 
PCAWG release and were subsequently normalized using the average 
expression of the wild-type gene. A value of 1 (dashed lined) reflects no 
difference in expression compared to the wild-type gene. e, The proportional 
activity of mutational signatures contributing to clustered driver events within 
each subclass. MBSs did not contribute to any reported driver events. For 
analyses in b–d, p-values were generated using a two-tailed Mann–Whitney 
U-test (*P < 0.05; p = 0.03 for STAT6; p = 0.04 for CTNNB1; p = 0.02 for BTG1). For 
each boxplot, the middle line reflects the median, the lower and upper bounds 
of the box correspond to the first and third quartiles, and the lower and upper 
whiskers extend from the box by 1.5x the inter-quartile range (IQR).
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Extended Data Fig. 6 | Clustered events and structural variations. a, The 
proportion of all clustered events co-locating with structural variations across 
all cancer types (left) and across each cancer type (right). b, The distance to the 
nearest structural variation for each class of clustered mutations (teal), and 
non-clustered mutations (red). The distribution for each class of clustered 
events were modelled using a Gaussian mixture (blue line). DBSs and MBSs 
were modelled using a single distribution, whereas omikli, other, and indels 
were modelled using two components reflecting the minimal distribution of 
overlap with structural variations. c, The mutational signatures active in 

ecDNA clustered events. d, YTCA versus RTCA enrichments per sample within 
non-ecDNA kataegis (top) and non-SV associated kataegis (bottom), where 
YTCA and RTCA enrichment is suggestive of APOBEC3A or APOBEC3B activity, 
respectively. Genic mutations were divided into transcribed (template strand) 
and coding mutations. The RTCA/YTCA fold enrichments were compared to 
the fold enrichments of non-clustered mutations (p-values calculated using 
two-tailed Mann–Whitney U-tests and corrected for multiple hypothesis 
testing using the Benjamini–Hochberg FDR procedure).



Extended Data Fig. 7 | Recurrent mutagenesis and functional effects of 
kyklonas. a, The total number of recurrently mutated ecDNA displayed as a 
proportion of the total number of ecDNA with kyklonas for a given cancer type. 
The total number of ecDNA with kyklonas are displayed above each bar plot for 
each cancer type. All ecDNA with recurrent hypermutation were considered 
enriched for kyklonic events after correcting for multiple hypothesis testing 
(Z-score test; q-values < 0.05). b, Proportion of samples containing ecDNA 
divided exclusively into those with co-occurring kataegis, no kataegis overlap, 
and no detected kataegis across the entire genome. The number of samples 

included in each cancer type are listed. For certain cancer types, as few as  
a single sample may represent the entire proportional breakdown (for example, 
Bone-Osteosarc or Bone-Epith). c, A single sarcoma genome and d, a single 
head squamous cell carcinoma genome depicting the overlap of kataegis  
with ecDNA regions displayed as a rainfall (top left) with a single zoomed in 
ecDNA represented using a circos plot (top right). Bottom: Two regions of the 
ecDNA with overlapping kyklonic events. VAFs are shown per event (orange).  
e, Kyklonic substitutions resulting in recurrent coding mutations within known 
cancer genes.
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Extended Data Fig. 8 | Validation of APOBEC3 hypermutation of ecDNA in 
three independent cohorts. a, Distribution of clustered substitutions (left) 
and clustered indels (right) across three validation cohorts. Clustered 
substitutions were subclassified into DBSs, MBSs, omikli, kataegis, and other 
clustered mutations. Top: Each black dot represents a single cancer genome. 
Red bars reflect the median clustered TMB and the percentage of clustered 
mutations contributing to the overall TMB of a given sample for each cancer 
type. Middle: The proportion of each subclass of clustered events for a given 
cancer type with the total number of samples having at least a single clustered 
event over the total number of samples within a given cancer cohort. Bottom: 
Percentage of clustered mutations compared to the percentage of clustered 
driver events for substitutions (left) and indels (right). P-values were calculated 
using a Fisher’s exact test and corrected for multiple hypothesis testing using 

Benjamini–Hochberg FDR procedure. b, Left: The mutational spectrum of all 
kyklonas across the validation cohorts. Right: The proportion of kyklonic 
events attributed to SBS2 and SBS13 (p-value determined using a Z-score test; 
Methods). c, The proportion of samples with ecDNA that co-occur with 
kataegis, do not co-occur with kataegis, or do not have any detected kataegic 
activity across each cohort. d, YTCA versus RTCA enrichments per sample with 
kyklonas, where YTCA and RTCA enrichment is suggestive of higher APOBEC3A 
or APOBEC3B activity, respectively. The RTCA/YTCA fold enrichments were 
compared to the fold enrichments of non-clustered mutations (p-values 
calculated using a two-tailed Mann–Whitney U-test). e, The proportion of 
ecDNA with kyklonas that contain multiple kyklonic events. The total number 
of ecDNA with kyklonas are displayed above each bar plot for each cancer type.



Extended Data Fig. 9 | Kyklonas occur distally from structural breakpoints 
across three independent cohorts. a, The distance to the nearest breakpoint 
for all kataegic mutations (teal), kyklonas (gold), and non-clustered mutations 
(red) across the three validation cohorts. b, Distances to the nearest SV 
breakpoints were normalized by calculating the expected distance a mutation 
would fall from a breakpoint given the number of breakpoints detected per 
chromosome and the overall length of the chromosome across the validation 

cohorts (left) and PCAWG (right). A value of 1 (dashed line) reflects a distance 
that one would expect based on the random placement of a mutation across the 
chromosome, whereas a value less than 1 reflects a mutation occurring closer 
than what is expected by random chance. The distributions of kataegic 
mutations were modelled using Gaussian mixture models (blue lines) with an 
automatic selection criterion for the number of components using the 
minimum Bayesian information criteria (BIC).



Article

Extended Data Fig. 10 | Examples of kyklonas in three independent 
cohorts. a, A single undifferentiated sarcoma genome depicting the overlap of 
kataegis with ecDNA regions displayed as a rainfall (left) with a single zoomed 
in ecDNA represented using a circos plot (middle). The outer track of the circos 
plot represents the reference genome of the ecDNA with proximal known 
cancer driver genes. The middle track reflects a circular rainfall plot where 
each dot represents the IMD around a single mutation coloured based on the 
substitution change. The innermost track shows the average VAF for each 
kyklonic event. Right: Two smaller regions of the selected ecDNA including a 
single kyklonic event within ZNF536 region resulting in a plethora of missense 

and stop-gained mutations, and a single kyklonic event within a promoter 
flanking with the average VAFs per event (orange). b, A single lung 
adenocarcinoma genome depicting the overlap of kataegis with ecDNA regions 
(left) with a single zoomed in ecDNA containing TBC1D15 and two distinct 
kyklonic events represented using a circos plot (middle). Right: Two kyklonic 
events overlapping an upstream region and TBC1D15. c, A single oesophageal 
squamous cell carcinoma genome depicting the overlap of kataegis with 
ecDNA regions (left) with a single zoomed in ecDNA containing PRKAA2 and 
DAB1 and three distinct kyklonic events (middle). Right: Two kyklonic events 
overlapping DAB1.
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