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Clustered somatic mutations are common in cancer genomes and previous analyses
reveal several types of clustered single-base substitutions, which include doublet- and
multi-base substitutions', diffuse hypermutation termed omikli¢, and longer
strand-coordinated events termed kataegis>’ . Here we provide a comprehensive
characterization of clustered substitutions and clustered small insertions and
deletions (indels) across 2,583 whole-genome-sequenced cancers from 30 types of
cancer’, Clustered mutations were highly enriched in driver genes and associated
with differential gene expression and changes in overall survival. Several distinct
mutational processes gave rise to clustered indels, including signatures that were
enriched in tobacco smokers and homologous-recombination-deficient cancers.
Doublet-base substitutions were caused by at least 12 mutational processes, whereas
most multi-base substitutions were generated by either tobacco smoking or exposure
to ultraviolet light. Omikli events, which have previously been attributed to APOBEC3

activity®, accounted for alarge proportion of clustered substitutions; however, only
16.2% of omikli matched APOBEC3 patterns. Kataegis was generated by multiple
mutational processes, and 76.1% of all kataegic events exhibited mutational patterns
that are associated with the activation-induced deaminase (AID) and APOBEC3 family
of deaminases. Co-occurrence of APOBEC3 kataegis and extrachromosomal DNA
(ecDNA), termed kyklonas (Greek for cyclone), was found in 31% of samples with
ecDNA. Multiple distinct kyklonic events were observed on most mutated ecDNA.
ecDNA containing known cancer genes exhibited both positive selection and kyklonic
hypermutation. Our results reveal the diversity of clustered mutational processesin
human cancer and the role of APOBEC3 in recurrently mutating and fuelling the

evolution of ecDNA.

Cancer genomes contain somatic mutations that are imprinted by
different mutational processes*. Most single-base substitutions and
smallindels areindependently scattered across the genome; however,
asubset of substitutions and indels tend to cluster?™, This clustering
has beenattributed to acombination of heterogeneous mutation rates
across the genome, biophysical characteristics of exogenous carcino-
gens, dysregulation of endogenous processes and larger mutational
events associated with genome instability—amongst others>*¢ 810131,
Previous analyses of clustered mutations have focused on single-base
substitutions and revealed several classes of clustered events, including
doublet- and multi-base substitutions'* (DBSs and MBSs, respectively),
diffuse hypermutation (omikli)® and longer events (kataegis)>’°. Most

kataegic events were found to be strand-coordinated, defined as shar-
ing the same strand and reference allele*". Previous studies have also
revealed nine clustered signatures™and clustered driver substitutions
due to APOBEC3-associated mutagenesis® or carcinogenic-triggered
POLH mutagenesis®.

DBSshavebeen extensively examined, revealing multiple endogenous
and exogenous processes that can cause these events, including failure
of DNA repair pathways and exposure to environmental mutagens*",
By contrast, MBSs have not been comprehensively investigated, presum-
ably owing to their small numbers in cancer genomes. Moreover, only
a handful of processes have been associated with omikli and kataegic
events, with most processes attributed to the AID and APOBEC3 family
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Fig.1| Thelandscape of clustered mutations across human cancer.
a,Pan-cancer distribution of clustered substitutions subclassified into DBSs,
MBSs, omikli, kataegis and other clustered mutations. Top, each black dot
representsasingle cancer genome. Red barsreflect the median clustered TMB
(mutations (mut) per Mb) for cancer types. Middle, the clustered TMB
normalized to the genome-wide TMB reflecting the contribution of clustered
mutationsto the overall TMB of a given sample. Red bars reflect the median
contribution for cancer types. Bottom, the proportion of each subclass of
clustered eventsforagiven cancer type with the totalnumber of samples
having atleast asingle clustered event over the total number of samples within

of deaminases>® 813142023 Specifically, the APOBEC3 enzymes, which
aretypically responsible for antiviral responses?°, give rise to omikli
and kataegis by requiring single-stranded DNA as a substrate®5%*!,
Omikliwere foundtobeenrichedin early replicating regions and more
prevalent in microsatellite stable tumours, indicating that mismatch
repair has a role in exposing short single-stranded DNA regions®.
The differential activity of mismatch repair towards gene-rich regions
results in increased omikli events within cancer genes®. Kataegis is
less prevalent than omikli as it is likely to depend on longer tracks of
single-stranded DNA”#*, Such tracks are typically available during the
repair of double-strand breaks and most kataegis has been observed
within 10 kb of detected breakpoints™.

Amplification of known cancer genes is known to drive tumorigenesis
in many types of cancer®. Studies have shown high copy-number states
of circular ecDNAs, which often contain known cancer genes and are
found in most cancers®*, The circular nature of ecDNAs and their
rapid replication mimic double-stranded DNA viral pathogens, which
indicates that they could be substrates for APOBEC3 mutagenesis; this
may contribute tothe evolution of tumours that containecDNA through
accelerated diversification of extrachromosomal oncoproteins.

Thelandscape of clustered mutations

Toidentify clustered mutations, asample-dependent intra-mutational
distance (IMD) cut-off was derived in which mutations below the cut-off
were unlikely to occur by chance (g-value < 0.01). A statistical approach
using the IMD cut-off, variant allele frequencies (VAFs) and corrections
for local sequence context was applied to each specimen (Methods,
Extended DataFig.1a). Clustered mutations with consistent VAFs were
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agiven cancer cohort. b, Pan-cancer distribution of clustered smallindels.
The top and middle panels have the same information as a. Bottom, the
proportion of each cluster type of indel for agiven cancer type with the total
number of samples having at least asingle clustered indel over the total
number of samples withina given cancer cohort. All 2,583
whole-genome-sequenced samples from PCAWG are included in the analysis;
however, cancers with fewer than10 samples were removed from the main
figureandincludedin Extended DataFig. 1d. For definitions of abbreviations
for cancertypesusedinthefigures, see 'Cancer-type abbreviations'in
Methods.

subclassified into four categories (Extended Data Fig. 1b). DBSs and
MBSs were characterized as two adjacent mutations (DBSs) and as three
or more adjacent mutations (MBSs) (IMD =1). Multiple substitutions
each with IMD >1bp and below the sample-dependent cut-off were
characterized as either omikli (two to three substitutions) or kataegis
(four or more substitutions) (Supplementary Fig. 1). Clustered sub-
stitutions with inconsistent VAFs were classified as ‘other’. Although
clustered indels were not subclassified into different categories, most
events resembled diffuse hypermutation, with 92.3% of events having
only two indels (Extended Data Fig. 1c).

Examining 2,583 whole-genome-sequenced cancers from the
Pan-Cancer Analysis of Whole Genomes (PCAWG) project revealed a
total of 1,686,013 clustered single-base substitutions and 21,368 clus-
teredindels (Fig.1, Extended Data Fig.1d). DBSs, MBSs, omikliand katae-
gis comprised 45.7%, 0.7%, 37.2% and 7.0% of clustered substitutions
across all samples, respectively, and their distributions varied greatly
withinand across cancer types. For example, melanoma had the highest
clustered substitution burden, with ultraviolet light associated dou-
blets (CC>TT) accounting for 74.2% of clustered mutations; however,
these contributed only 5.3% of all substitutions in melanoma (Fig. 1a).
By contrast, 11.5% of all substitutions in bone leiomyosarcomas were
clustered, and omikli and kataegis constituted 43.8% and 46.7% of these
mutations, respectively (Fig. 1a). Clustered indels exhibited similarly
diverse patterns within and across cancer types (Fig. 1b). For example,
the highest mutational burden of clustered indels was observedin lung
and ovarian cancers. Clustered indelsin lung cancer accounted for only
2.6% of allindels and were characterized by 1-bp deletions. By contrast,
clustered long indels at microhomologies were commonly found in



ovarianand breast cancers and contributed more than10% of allindels
inasubset of samples (Fig.1b). Correlations between the total number
of mutations and the number of clustered mutations were observed for
DBSs and omikli but not for MBSs, kataegis or indels (Extended Data
Fig. 1e). In most cancers, DBSs and omikli had VAFs consistent with
those of non-clustered mutations, whereas MBSs and kataegis tended
to havelower VAFs (Extended Data Fig. 1f). Kataegic events contained 4
to44 mutations and 81% of events were strand-coordinated, indicative
of damage or enzymatic changes on a single DNA strand.

The overall survival was compared between patients with cancers
containing high and low numbers of clustered mutations within
whole-genome-sequenced PCAWG and whole-exome sequenced
The Cancer Genome Atlas (TCGA) cancer types®. Better overall
survival was observed only in whole-genome-sequenced ovarian
cancers that contained high-levels of clustered substitutions or clus-
tered indels (g-values < 0.05) (Extended Data Fig. 1g, h). Conversely,
whole-exome-sequenced adrenocortical carcinomas containing
clustered substitutions were associated with a worse overall survival
(g-value = 7.2 x107%) (Extended Data Fig. 1i-k).

Signatures of clustered mutations

Mutational signature analysis was performed for each category of
clustered events, which enabled the identification of 12 DBS, 5 MBS,
17 omikli, 9 kataegic and 6 clustered indel signatures (Fig. 2, Sup-
plementary Tables 1-5). Although DBS signatures have previously
been described!, previous analysis combined DBSs and MBSs into a
single class’. Separating these events into individual classes showed
thatamultitude of processes cangiverise to DBSs, whereas most MBSs
areattributable to signatures associated with tobacco smoking (SBS4)
or ultraviolet light (SBS7). Additional DBS and MBS signatures were
found within a small subset of cancer types (Extended Data Fig. 2).

In cancer genomes, omikli were previously attributed to APOBEC3
mutagenesis® with some indirect evidence from experimental mod-
els?*”3_Qur analysis of sequencing data® from the clonally expanded
breast cancer cell line BT-474 with active APOBEC3 mutagenesis experi-
mentally confirmed the existence of APOBEC3-associated omikli events
(cosine similarity: 0.99) (Extended Data Fig. 3a). Only 16.2% of omikli
eventsacross the 2,583 cancer genomes matched the APOBEC3 muta-
tional pattern, suggesting that a variety of other processes can give
rise to diffuse clustered hypermutation. Notably, our analysis revealed
omikli due to tobacco smoking (SBS4), clock-like mutational processes
(SBS5), ultraviolet light (SBS7), both direct and indirect mutations
from AID (SBS9 and SBS85), and multiple mutational signatures with
unknown aetiology in different cancer types (SBS8, SBS12, SBS17a/b,
SBS28, SBS40 and SBS41) (Fig. 2). Cell lines previously exposed to
benzo[a]lpyrene*® and ultraviolet light* confirmed the generation of
omiklieventsasaresult of these two environmental exposures (cosine
similarities: 0.86 and 0.84, respectively) (Extended Data Fig. 3a).

Of the nine kataegic signatures, four have been reported previ-
ously, including two associated with APOBEC3 deaminases (SBS2
and SBS13) and two associated with canonical or non-canonical AID
activities (SBS84 and SBS85) (Fig. 2). SBSS (clock-like mutagenesis)
accounted for 15.0% of kataegis, with most events occurring in the
vicinity of AID kataegis within B cell ymphomas. The remaining four
kataegic signatures accounted for only 8.9% of kataegic mutations and
included SBS7a/b (ultraviolet light), SBS9 (indirect mutations from
AID) and SBS37 (unknown aetiology). Most kataegic signatures were
strand-coordinated (Extended Data Fig. 3b). Some samples exhibited
consistent whereas others exhibited distinct signatures of clustered
and non-clustered mutagenesis (Extended Data Fig. 4). For example,
in SP56533 (lung squamous cell carcinoma), most non-clustered and
omiklisubstitutions were caused by tobacco signature SBS4, whereas
kataegic events were generated by the APOBEC3 signatures (Extended
Data Fig. 4a). By contrast, the pattern of non-clustered substitutions
in SP24815 (glioblastoma) was due to clock-like signatures SBS1 and
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Fig.2|Mutational processes that underlie clustered events. Eachcircle
represents theactivity ofasignature for agiven cancer type. Theradius of the
circle determines the proportion of samples with greater thanagiven number
of mutations specific to each subclass; the colour reflects the median number
of mutations per cancer type. Aminimum of two samples are required per
cancertype for visualization (Methods).

SBS5, whereas omikli and kataegic events were mostly attributable to
APOBEC3 (Extended Data Fig. 4a).

Theremaining ‘other’ clustered substitutions exhibited inconsistent
VAFs that probably represent mutations at highly mutable genomic
regions or the effects of co-occurring large mutational events such as
copy number alterations (Extended Data Fig. 3d, Supplementary Table 6).

Different cancers showed distinct tendencies of clustered indel
mutagenesis (Fig. 2). For instance, clustered indels attributed to ID3
(tobacco smoking; characterized by 1-bp deletions) were found pre-
dominately in lung cancers and were significantly increased in smok-
ers compared to non-smokers (P=0.0014) (Extended Data Figs. 3c,
4b). Clustered indels due to signatures ID6 and ID8—both attributed
to homologous recombination deficiency and characterized by long
indels at microhomologies—were found in breast and ovarian cancers
andwere highlyincreasedin cancers with known deficienciesin homolo-
gousrecombinationgenes (P=4.9 x10™") (Extended DataFigs. 3¢, 4b).

Panorama of clustered driver mutations

The PCAWG project elucidated aconstellation of mutations that puta-
tively drive cancer development™. Our current analysis reveals sig-
nificant enrichments of clustered substitutions and clustered indels
amongst these driver mutations. Specifically, whereas only 3.7% of

Nature | www.nature.com | 3



Article

a b f BRAF BRAF
Al Al > _ 10 q=0077
substitutions Clustered Non-clustered indels Clustered Non-clustered £ £
: d 3 3o
SubSQiILE)lIi'glnesr Clustered Non-clustered E}g‘éﬂ Clustered Non-clustered § § 08
! . . T ————— g <
10 100 (%) 1 10 100 (%) < So7
2.25-fold enrichment (g < 1 x 105) d 7.5-fold enrichment (g < 1 x 1075) % Z 06
c £ 0.
— a 305 hae
All genes 367/4351 Allgenes [ | 74/1104
ol 23/30 0 2 4 6 8 10 0 5 10 15 20 25 30 35 40
P53 e | 35/772 ALB® | oo Timeline (days) (x109) Timeline (months)
TERT | o | 19/144 APC| - | Age T™MB ‘
BTGT | 19/26 FOXA1 10/20 T™B Clustered
CTNNBT | « | 16/123 MAP3KT | * 618 postered | | BRAFMU
srar o] 15/86 KMT2D | - | 4/52 ™30 05 0 05 10 log,o(HR)
kras | ] 10/270 ARID1A 372 | o log;(HR)
- Re1| - 321 25 TP53 TP53 .
B2m | - | 10/29 M o s B8 > 10 q=9.0x10% . ;,g q=40x10°
MIR142 1 ° | 10/18 CDKN2A 2/54 & % § 0.8 308
| 25
MYC| e 10/13 g. PTEN| - 2/42 = g- 06 g g;
L go.
EGFR| « 9/28 g 5)Q PIK3RT | - | 2/17 El T 05
CDKN2A | « 8/71 § g NFKBIE | - | 2/6 ; 0.4 g 0.4
RFTNT | + 22 28 ciel™ 23 @ 9o 3 g.g
= 0 | ..
SMAD4 | - | e g = ACVR2A | - | 11 012345 6 7 0 5 10 15 20 25 30 35 40
HLA-B M3 @ CDH1 1/8 Timeline (days) (x10°%) Timeline (months)
| ] Age T™B
PTEN 7/74 B 1/5
- | CDKN1A| - | T™MB Clustered | .
STAT6 6/17 0_02 04 06 08 1.0 Clustered TP53 mut !
EBF1| - | 6/10 Number ofclstered  Type of clustered driver TP53 mut oo o -1.0 -05 Iog “ ’%5 1.0
river indels =11 =0. B
seki1 || 6/9 7 50 7+ |== !-bpdel. mm Longins. log,o(HR) °
cresap| - | 5/47 Number of samples B 1-bpins. M Microhomology del. EGFR EGFR
b --nun I Long del. > 1.0 g =0.030 - 1.0 q=87x102
NFE2L2 5/35 = £
SETDBY | - | 5/14 1 38 766 208 Zos
- 8
KLHL6 5/13 e Depleted in Enriched in g 0.6 go's
. clustered drivers clustered drivers o —= 04
NOTCH2 5/13 > 04 5}
OX0 1 . é Missense |- q=53x102 c g 0.2
FOXO1| - | 5m & 5 Synonymous _—— g=31x10" B 0.2 3 o
TMSB4X 5/7 £ £ Stop-gained —— g=33x102°
0 02 04 06 08 1.0 Gé Stop-lost —— [g=19x102 Ti1melin2e (da?s) (x?03) ° 0 ﬂgqe}iiez(r%ozn?h:)o %
Number of clustered 1P Of clustered driver = Age
driver subs .
. Frameshift — =8.4x10"
6 16 46 I DBS B Kataegis .2 é In-frame — Z: 1_0X Clustg;/elg [
Number of samples [0 MBS [ Other o< Splicing q=53x102 EGFR mut -1.0 -05 0 05 1.0
[-[o][® @ @] == omii -1 0 1.0 0 _¢ 10g;o(HR)
107" 10° 10" 10° log,o(HR) — Clustered
2 60 1,806 0Odds ratio — Non-clustered

Fig.3|Panoramaof clustered driver mutationsin human cancer.

a, b, Percentage of clustered mutations (top) compared to the percentage of
clustered driver events (bottom) for substitutions (a) and indels (b). ¢, The
frequency of clustered driver events across known cancer genes. The radius of
thecircleis proportional to the number of samples witha clustered driver
mutationwithinagene; the colour reflects the clustered mutational burden.
Allclustered driver events are classified into one of the five clustered classes,
with the number of clustered driver substitutions and the total number of
driver substitutions shownontheright.d, Clustered indel drivers are shownin
asimilar manner toc. e, The odds ratio of clustered substitutions (top) and
indels (bottom) resulting in deleterious (n =192 clustered substitutions; n =54
clusteredindels) or synonymous changes (n = 5clustered substitutions;n=5
clusteredindels) withinagivendriver gene compared to non-clustered driver
mutations (n=771deleterious and n =237 synonymous substitutions; n =111

all substitutions and 0.9% of all indels are clustered events, they con-
tribute 8.4% and 6.9% of substitution and indel drivers, respectively
(g-values <1x1075; Fisher’s exact tests) (Fig. 3a, b). Omikli accounted
for50.5% of all clustered substitution drivers, whereas DBSs, kataegis
and other clustered events each contributed between 14% and 18%
(Fig. 3c). Clustered driver substitutions varied greatly between genes
and across different cancers (Fig. 3¢, Extended Data Fig. 5a) with a
2.4-fold enrichment of clustered events within oncogenes compared
to tumour suppressors (P=5.79 x107%) (Extended Data Fig. 5b, c).
In some cancer genes, only a small percentage of driver events are
dueto clustered substitutions; examples include TP53 (4.5% clustered
driver substitutions), KRAS (3.7%) and PIK3CA (2.2%). In other genes,
most detected substitution drivers were clustered events; examples
include: BTG1 (73.1%), SGK1(66.6%), EBF1(60.0%) and NOTCH2 (38.5%).
Notably, the contribution from each class of clustered events varied
across driver substitutions in different genes (Fig. 3¢). For instance,
ultraviolet-light-associated DBSs comprised 93% of clustered BRAF
driver events, omikli contributed 63% of clustered BTGI driver events
and kataegis accounted for 100% of clustered NOTCH2 driver substi-
tutions (Fig. 3c). Similar behaviour was observed for clustered indel
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deleteriousand n=50 synonymousindels). All events were overlapped with the
PCAWG consensus list of driver events and were annotated using the ENSEMBL
Variant Effect Predictor (VEP). The oddsratios are shown with their 95%
confidenceintervals. f, Kaplan-Meier survival curves comparing the outcome
of samples with clustered versus non-clustered mutations in BRAF (top), TP53
(middle) and EGFR (bottom) across TCGA cohorts. Only cohorts with more than
five samples containing a clustered mutation within the given gene were
included. g, Kaplan-Meier survival curves comparing the outcome of samples
with clustered versus non-clustered mutationsin the same genes across the
MSK-IMPACT cohort. Thelog,,-transformed hazards ratios (log,,(HR)) are
shown with their 95% confidenceintervalsinf,g. Cox regressions were
corrected for age (TCGA only), mutational burden and cancer type (Methods).
Qvaluesina,b,ewere calculated using atwo-tailed Fisher’s exact testand
corrected for multiple hypothesis testing.

drivers, with 48.7% being single-base pair indels (Fig. 3d). In some
cancer genes, clustered indel drivers were rare (for example, 2.4% of
indeldriversin TP53were clustered), whereas in others they were com-
mon (for example, 76.6% in ALB) (Fig. 3d). Clustered driver substitu-
tions were enriched in stop-lost mutations (g-value =1.9 x 102) and
depletedinstop-gained mutations (g-value = 3.3 x 10) when compared
tonon-clustered drivers (Fig. 3e). Furthermore, driver genes that con-
tained clustered events were often differentially expressed compared
to those containing non-clustered events (Extended Data Fig. 5d). For
instance, clustered events within CTNNBI and BTG1 associated withan
increased expression compared to both non-clustered and wild-type
expression levels for each gene (g-values < 0.05). Opposite effects
were observedin STAT6 and RFTNI (g-values < 0.05). Collectively, these
driver events wereinduced by the activity of multiple mutational pro-
cesses including exposure to ultraviolet light, tobacco smoke, plati-
num chemotherapy and AID and APOBEC3 activity; amongst others
(Extended DataFig. Se).

The clinical utility of detecting clustered eventsin driver genes was
evaluated by comparing the survival amongst individuals with clustered
mutations versus individuals with non-clustered mutations within
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a, Proportion of all kataegic events per cancer type overlapping different
amplifications or structural variations. b, Distance to the nearest breakpoint
for all kataegic mutations (teal), kyklonas (gold) and non-clustered mutations
(red).Kataegic distances were modelled as a Gaussian mixture with three
components (blueline). ¢, Left, volcano plot depicting samples thatare
statistically enriched for kyklonas (red; g-values from a false discovery rate
(FDR)-corrected z-test; not significant (NS)). Middle left, proportion of samples
with ecDNA co-occurring with kataegis. Middle right, mutational spectrum of
allkyklonas. Right, proportion of kyklonic events attributed to SBS2 and SBS13.
Cosine similarity was calculated between the kyklonic and the reconstructed
spectracomposed using SBS2 and SBS13 (Pvalue from a Z-score test).

d, Rainfall plotsillustrating the IMD distribution for agiven sample with the
genomiclocations of ecDNA breakpoints (maroon). e, Top, YTCA versus RTCA
enrichments per sample with kyklonas, inwhich YTCA or RTCA enrichmentis

eachdriver geneacross all whole-exome-sequenced samplesin TCGA.
Foreach of these comparisons, we performed Cox regressions consider-
ing the effects from age and tumour mutational burden (TMB) while cor-
recting for cancer type and multiple hypothesis testing. These results
were validated in targeted panel sequencing data from the Memorial
Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer
Targets (MSK-IMPACT) cohort*>**. These analyses revealed asignificant
differencein survival between individuals with clustered and individu-
als with non-clustered mutations detected in TP53, EGFR and BRAF.
Specifically, individuals with clustered events within BRAF had a better
overall survival compared to individuals with non-clustered events
(g-values < 0.05) (Fig. 3f, g). Conversely, inboth TCGA and MSK-IMPACT,
individuals with clustered mutations in TP53 or EGFR exhibited a sig-
nificantly worse outcome compared to individuals with non-clustered
mutations in each of these genes (g-values < 0.05) (Fig. 3f, g).

Kataegic events and focal amplifications

Ineachsample, kataegic mutations were separated into distinct events
onthebasis of consistent VAFs across adjacent mutations and IMD dis-
tances greater than the sample-dependent IMD threshold (Methods).
Our analysisrevealed that 36.2% of all kataegic events occurred within
10 kbofastructural breakpoint but not on detected focal amplifications
(Fig. 4a). In addition, 21.8% of all kataegic events occurred eitherona

suggestive of higher APOBEC3A or APOBEC3B activity, respectively. Genic
mutations were divided into transcribed (template strand) and coding
mutations. The RTCA/YTCA fold enrichments were compared to those of
non-clustered mutations (bottom). f, Relative expression of APOBEC3A and
APOBEC3B insamples containing ecDNA (n=157) compared to samples
withoutecDNA (n=1,364) (left), and in samples with ecDNA that have kyklonas
(n=59) compared tosamples without kyklonas (n = 98) (right). Expression
values were normalized using fragments per kilobase of exon per million
mapped fragment (FPKM) and upper quartile (UQ) normalization obtained
fromthe PCAWG release. Qvaluesine, fwere calculated using a two-tailed
Mann-Whitney U-test and FDR corrected using the Benjamini-Hochberg
procedure.Forbox plots, the middleline reflects the median, the lower and
upperboundsof the box correspond to the first and third quartiles, and the
lower and upper whiskers extend from the box by 1.5x the interquartile range.

detected focal amplification or within 10 kb of a focal amplification’s
structural breakpoints: 9.6% on circular ecDNA, 6.3% on linear rear-
rangements, 3.3% within heavily rearranged events and 2.6% associated
with breakage-fusion-bridge cycles (BFBs) (Fig. 4a). Finally, 42.0% of
kataegic events were neither within 10 kb of a structural breakpoint
noronadetected focalamplification. Modelling the distribution of the
distances between kataegic events and the nearest structural variations
revealed a multi-modal distribution with three components (Fig. 4b):
kataegis within 10 kb, around 1 Mb, or more than 1.5 Mb of a detected
breakpoint. Of note, ecDNA-associated kataegis—termed kyklonas
(Greek for cyclone)—had an average distance from the nearest break-
point of around 750 kb, with only 0.35% of kyklonic events occurring
both onecDNA and within10 kb of abreakpoint (Fig. 4b). These results
indicate that kyklonic events are not likely to have occurred because
of structural rearrangements during the formation of ecDNA. In most
cancer types, DBSs, MBSs, omikli and other cluster events were not
foundinthe vicinity of structural variations (Extended DataFig. 6a, b).

Recurrent kyklonic mutagenesis of ecDNA

Although only 9.6% of kataegic events occur within ecDNA regions,
more than30% of ecDNAs had one or more associated kyklonic events
(Fig.4c). The mutations within these ecDNA regions were dominated by
the APOBEC3 patterns, which are characterized by strand-coordinated
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****g<0.0001).b, Left, normalized distributions of the VAFs for all clustered
mutations excluding kataegis (orange), allnon-ecDNA kataegis (teal), and
kyklonas (red). Right, normalized VAF distributions for kyklonicecDNA
containing cancer genes and for kyklonicecDNA without cancer genes. c,

C>G and C>T mutations in the TpCpW context and attributed to sig-
natures SBS2 and SBS13 (P <1 x 107) (Fig 4¢, d, Extended Data Fig. 6¢).
These APOBEC3-associated events contributed 97.8% of all kyklonic
events, whereas the remaining mutations were attributed to clock-like
signature SBS5 (1.2%) and other signatures (1.0%) (Extended Data
Fig. 6¢). Furthermore, kyklonic events exhibited an enrichment of
C>T and C>G mutations at APOBEC3B-preferred RTCA compared
to APOBEC3A-preferred YTCA contexts (underlining reflects the
mutated nucleotide)’, indicating that APOBEC3B is likely to have an
important role in the mutagenesis of circular DNA bodies (Fig. 4e).
Similar levels of enrichment for RTCA contexts were also observed in
both non-ecDNA kataegis and non-structural variant (SV)-associated
kataegis, suggesting that APOBEC3B generally gives rise to many
of the strand-coordinated kataegic events (Extended Data Fig. 6d).
Anincrease in the expression of APOBEC3B—but not APOBEC3A—
was observed in cancers with ecDNA compared to samples without
ecDNA (3.1-fold; g-value <1 x 107) (Fig. 4f). Within cancers containing
ecDNA, no differences were observed in the expression of APOBEC3A or
APOBEC3B between samples withand without kyklonic events (Fig. 4f).

More recurrent APOBEC3 kataegis was observed across circular
ecDNA regions compared to other forms of structural variation (Fig. 5a).
Anaverage of 2.5kyklonic events were observed withinecDNA regions
(range: 0-64 kyklonic events; 0-505 mutations). Recurrent kyklo-
nas was widespread across cancer types (Extended Data Fig. 7a, b).
For example, glioblastomas and sarcomas exhibited an average of 5
and 86 kyklonic mutations, respectively. The average VAF of kyklonas
was significantly lower thanboth non-ecDNA associated kataegis and
all other clustered events (g-values <1 x 10 Fig. 5b). Notably, a subset
of kyklonas exhibited VAFs above 0.80, whichiis likely to reflect early
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mutagenesis of genomic regions that have subsequently amplified
as ecDNA. Moreover, kyklonic events with high VAFs occurred more
commonly on ecDNA that contained known cancer genes, suggest-
ing a mechanism of positive selection (Fig. 5b). Approximately 7.2%
of kyklonas occurred early in the evolution of a given ecDNA popula-
tion within a tumour (VAF > 0.80), whereas the majority of kyklonic
events (around 82.5%; VAF < 0.5) have probably occurred after clonal
amplification by recurrent APOBEC3 mutagenesis.

Recurrent kyklonic events were increased within or near known
cancer-associated genes including TP53, CDK4 and MDM2, amongst
others (Fig.5¢). These recurrent kyklonas were observed across many
cancersincluding glioblastomas, sarcomas, head and neck carcinomas
and lung adenocarcinomas (Extended DataFig. 7c, d). For example, in
asarcomasample (SP121828), 10 distinct kyklonic events overlapped
asingle ecDNA region with recurrent APOBEC3 activity in proxim-
ity to MDM2, resulting in a missense L230F mutation (Extended Data
Fig.7c). Thesame ecDNAregion contained additional kyklonic events
occurring withinintergenic regions that have distinguishable VAF dis-
tributions, implicating recurrent mutagenesis (Extended Data Fig. 7c).
Similarly, two distinct kyklonic events occurred on an ecDNA containing
EGFR, resulting in a missense mutation D191N within a head and neck
cancer (Extended Data Fig. 7d). Of note, ecDNA regions with known
cancer-associated genes had significantly higher numbers of kyklonic
events and mutational burdens of kyklonas compared to ecDNA regions
without any known cancer-associated genes (g-values <1x107)
(Fig. 5d). Furthermore, we observed a higher co-occurrence of kyklo-
nas with known cancer-associated genes, which were mutated 2.5
times more than ecDNA without cancer-associated genes (P=1.2 x107%;
Fisher’s exact test). Overall, 41% of kyklonic events were found within



thefootprints of known cancer driver genes (P <1x107). These enrich-
ments cannot be accounted for either by an increase in the overall
mutations or by anincreaseinthe overall clustered mutationsinthese
samples (Fig. 5e). To understand the functional effect of kyklonas, we
annotated the predicted consequence of each mutation. Intotal, 2,247
kyklonic mutations overlapped putative cancer-associated genes, of
which 4.3% occur within coding regions (Extended DataFig. 7e). Specifi-
cally, 63 resulted in missense mutations, 29 resulted in synonymous
mutations, 4 introduced premature stop codons and 1removed astop
codon (Supplementary Table 7). These downstream consequences of
APOBEC3 mutagenesis suggest a contribution to the oncogenic evolu-
tion of specific ecDNA populations.

Validation of kyklonic eventsin ecDNA

Kyklonic events were further investigated across 3 additional inde-
pendent cohorts, including 61 sarcomas**, 280 lung cancers* and
186 oesophageal squamous cell carcinomas*. Comparable rates of
clustered mutagenesis were found for both substitutions and indels
totheratesreportedin PCAWG, with a2.4-and 5.0-fold enrichment of
clustered substitutions and indels within driver events, respectively
(Extended DataFig. 8a). Across the three cohorts, 31% of samples with
ecDNA exhibited kyklonas within the sarcomas, 14% within the oesopha-
geal cancers and 28% within the lung cancers, supporting the rates
observedin PCAWG (Fig. 4c, Extended Data Figs. 7b, 8c). Similar to the
rate observed in PCAWG (36.2%), approximately 30.1% of all kataegis
occurred within10 kb of the nearest breakpoint in the validation cohort
(Extended Data Fig. 9a). In addition, only 0.34% of kyklonic events in
the validation dataset occurred closer to SVs than expected by chance,
which closely resembles the observations in the PCAWG data (0.35%)
(Extended Data Fig. 9b). Kyklonic mutations were predominantly attrib-
uted to APOBEC3 signatures SBS2 and SBS13 (P <1 x107) (Extended
Data Fig. 8b, Methods) with an enrichment of mutations at the RTCA
context supporting the role of APOBEC3B (Extended Data Fig. 8d).
A widespread recurrence of kyklonic events was observed across the
sarcomas, oesophageal and lung cancers, with 45%, 28% and 46% of
samples with ecDNA containing multiple, distinct kyklonic events
(Extended Data Fig. 8e). An example from each cohort was selected
toillustrate multiple kyklonic events occurring within single ecDNAs,
validating the recurrent APOBEC3 hypermutation of ecDNA (Extended
Data Fig.10).

Discussion

Clustered mutagenesisin cancer can occur through different mutational
processes, with AID and APOBEC3 deaminases having the most promi-
nentrole.Inaddition to enzymatic deamination, other endogenous and
exogenous sourcesimprint many of the observed clustered indels and
substitutions. A multitude of mutational processes cangive rise to omikli
events, including tobacco carcinogens and exposure to ultraviolet light.
Clustered substitutions and indels were highly enriched indriver events
and associated with differential gene expression, implicating themin
cancer development and cancer evolution. Some clustered mutational
signatures are associated with known cancer risk factors or the activ-
ity or failure of DNA repair processes. Notably, clustered mutations in
TP53, EGFR and BRAF associated with changes in overall survival and
can be detected in most types of sequencing data, including clinically
actionable targeted panels such as MSK-IMPACT.

Alarge proportion ofkataegic events occur within10 kb of detected
SV breakpoints with a mutational pattern, suggesting the activity of
APOBEC3. Multiple distinct kataegic events, independent of detected
breakpoints, were observed on circular ecDNA; such events—termed
kyklonas—suggest recurrent APOBEC3 mutagenesis. The circular topol-
ogy of ecDNAs* and their rapid replication patterns are reminiscent
of the structure and behaviour of the circular genomes of several
double-stranded-DNA based, pathogens including herpesviruses,

papillomaviruses and polyomaviruses® . Previous pan-virome stud-
ies have shown that these double-stranded DNA viral genomes often
manifest mutations from APOBEC3 enzymes**~°, As such, recurrent
APOBEC3 mutagenesis on ecDNA is likely to be representative of an
antiviralresponseinwhich the ecDNA viral-like structureis treated asan
infectious agent and attacked by APOBEC3 enzymes. ecDNAs containa
plethora of cancer-associated genes and are responsible for many gene
amplification events that can accelerate tumour evolution. Repeated
mutagenic attacks of these ecDNAs reveal functional effects within
known oncogenes and implicate additional modes of oncogenesis that
may ultimately contribute to subclonal tumour evolution, subsequent
evasion of therapy and clinical outcome. Further investigations with
large-scale clinically annotated whole-genome-sequenced cancers
arerequired to fully understand the clinical implications of clustered
mutations and kyklonas.
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Methods

Data sources

Somatic variant calls of single-base substitutions, small indels and
structural variations were downloaded for the 2,583 white-listed
whole-genome-sequenced samples from PCAWG along with the cor-
respondinglist of consensus driver events™. Epidemiological and clini-
calfeatures for all available samples were downloaded from the official
PCAWGrelease (https://dcc.icgc.org/releases/PCAWG). The collection
of whole-exome-sequenced samples from TCGA along with all available
clinical features were downloaded from the Genomic Data Commons
(GDC; https://gdc.cancer.gov/). The MSK-IMPACT Clinical Sequencing
Cohort* composed 0f 10,000 clinical cases was downloaded from
cBioPortal (https://www.cbioportal.org/study/summary?id=msk_
impact_2017). The subclassification of focal amplifications comprised
circular ecDNA, linear amplifications, BFBs and heavily rearranged
events, and their corresponding genomic locations were obtained for
asubset of samples (n=1,291) as reported®.

Experimental models used to validate clustered events were derived
from previous studies using primary Hupki mouse embryonic fibro-
blasts (MEFs) exposed to ultraviolet light*, human induced pluripo-
tent stem cells (iPS cells) exposed to benzo[alpyrene*°, and a clonally
expanded BT-474 human breast cancer cell line with episodically active
APOBEC3%.

Independent cohorts used to validate kyklonic events were col-
lected from multiple sources. The 61 undifferentiated sarcomas**
and 187 high-confidence oesophageal squamous cell carcinomas*
were downloaded from the European Genome-phenome Archive
(EGAD00001004162 and EGAD00001006868, respectively).
The 280 lung adenocarcinomas® were downloaded from dbGaP under
theaccession number (phs001697.v1.p1). Clustered mutationsin valida-
tion samples were analysed using the same approach as the one used
inthe original cohort.

Detection of clustered events

SigProfilerSimulator (v.1.0.2) was used to derive an IMD cut-off* that
is unlikely to occur by chance based on the TMB and the mutational
patterns for a given sample. Specifically, each tumour sample was
simulated while maintaining the sample’s mutational burden oneach
chromosome, the +2 bp sequence context for each mutation and the
transcriptional strand bias ratios across all mutations. All mutations
in each sample were simulated 100 times and the IMD cut-off was cal-
culated such that 90% of the mutations below this cut-off could not
appear by chance (g-value < 0.01). For example, in asample with an
IMD threshold of 500bp, one may observe 1,000 mutations within
this threshold with no more than 100 mutations expected based on
the simulated data (g-value < 0.01). P values were calculated using
z-tests by comparing the number of real mutations and the distribu-
tion of simulated mutations that occur below the same IMD threshold.
Amaximum cut-off of 10 kb was used for all IMD thresholds. By generat-
ingabackground distribution that reflects the random distribution of
eventsused toreduce the false positive rate, this model also considers
regional heterogeneities of mutation rates, partially attributed to rep-
lication timing and expression, and variances in clonality by correct-
ing for mutation-rich regions and mutation-poor regions within 1-Mb
windows. The 1-Mb window size has been used and established as an
appropriate scale when considering the variability in mutation rates
associated with chromatin structure, replication timing and genome
architecture>>%3, The 1-Mb window ensures that subsequent muta-
tions are likely to have occurred as single events using a maximum
cut-off of 0.10 for differences in the VAFs. The regional IMD cut-off
was determined using a sliding window approach that calculated the
fold enrichment between the real and simulated mutation densities
within 1-Mb windows across the genome. The IMD cut-offs were further
increased, for regions that had higher than ninefold enrichments of

clustered mutations and where more than 90% of the clustered muta-
tions were found within the original data, to capture additional clus-
tered events while maintaining the original criteria (less than 10% of the
mutations below this cut-off appear by chance; g-value < 0.01). Last, as
VAF of mutations may confound the definition of clustered events in
ecDNA, we calculated the distribution of inter-event distances within
recurrently mutated ecDNA while disregarding the VAF of individual
mutations. Thisresulted in the exact same separation of kataegic events
using only the inter-event distances as a criterion for the grouping of
mutations into a single event.

Subsequently, all clustered mutations with consistent VAFs were
classified into one of four categories (Extended Data Fig.1a). Two adja-
centmutations with anIMD of 1were classified as DBSs. Three or more
adjacent mutations each with anIMD of 1 were classified as MBSs. Two
or three mutations with IMDs less than the sample-dependent threshold
and with at least a single IMD greater than 1 were classified as omikli.
Four or more mutations with IMDs less than the sample-dependent
threshold and with at least asingle IMD greater than 1 were classified as
kataegis. A cut-off of four mutations for kataegis was chosen by fitting a
Poisson mixture model to the number of mutationsinvolvedinasingle
event across all extended clustered events excluding DBSs and MBSs
(Supplementary Note1). This model comprised two distributions with
C1=2.08and C2 =4.37representing omikliand kataegis, respectively.
A cut-off of four mutations was used for kataegis on the basis of a con-
tribution of greater than 95% from the kataegis-associated distribution
with events of four or more mutations. Note that thereis certainambigu-
ity for eventswithtwo orthree mutations. Although the majority of these
events are omikli, some of these events are likely to be short kataegic
events (Supplementary Note 1). All remaining clustered mutations
with inconsistent VAFs were classified as other. Clustered indels were
not classified into different classes. We also performed additional
quality-checks to ensure that the majority of clustered indels were
mapped to high confidence regions of the genome (Supplementary
Fig.2).Specifically, all clustered indels were aligned against a consensus
list of blacklisted genomic regions developed by ENCODE® revealing
thatonly 0.5% of all clustered indels overlapped regions with low map-
pability scores.

Clustered mutational signatures analysis

The clustered mutational catalogues of the examined samples were
summarized in SBS288 and ID83 matrices using SigProfilerMatrix-
Generator® (v.1.2.0) for each tissue type and each category of clus-
tered events. For example, six matrices were constructed for clustered
mutations found in Breast-AdenoCA: one matrix for DBSs, one matrix
for MBSs, one matrix for omikli, one matrix for kataegis, one matrix
for other clustered substitutions and one matrix for clustered indels.
The SBS288 classification considers the 5’ and 3’ bases immediately
flanking each single-base substitution (referred to using the pyrimi-
dine base in the Watson-Crick base pair) resulting in 96 individual
mutation channels. In addition, this classification considers the strand
orientation for mutations that occur within genic regionsresultingin
three possible categories: (1) transcribed; pyrimidine base occurs on
the template strand; (2) untranscribed; pyrimidine base occurs on the
coding strand; or (3) non-transcribed; pyrimidine base occursin an
intergenic region. Mutations in genic regions that are bidirectionally
transcribed were evenly split amongst the coding and template strand
channels. Combined, this results in a classification consisting of 288
mutation channels, which were used as input for de novo signature
extraction of clustered substitutions. The ID83 mutational classifica-
tion has previously been described®.

Mutational signatures were extracted from the generated matri-
ces using SigProfilerExtractor (v.1.1.0), a Python-based tool that uses
non-negative matrix factorization to decipher both the number of
operative processes within a given cohort and the relative activities
of each process within each sample®. The algorithm was initialized
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using random initialization and by applying multiplicative updates
using the Kullback-Leibler divergence with 500 replicates. Each
de novo extracted mutational signature was subsequently decom-
posed into the COSMIC (v.3) set of signatures (https://cancer.sanger.
ac.uk/signatures/) requiring a minimum cosine similarity of 0.80 for
allreconstructed signatures. All de novo extractions and subsequent
decomposition were visually inspected and, as previously done', man-
ual corrections were performed for 2.2% of extractions (4 out of 180
extractions) in which the total number of operative signatures was
adjusted 1. Consistent with prior visualizations'®, we have included
allcancer types withinthe PCAWG cohort, which may comprise as few
asonesample for certain cancer types. Similarly, consistent with prior
visualizations!, decomposed signature activity plots required that each
cancer type have more than 2 samples and used mutation thresholds
foreach clustered category; 25 mutations per sample were required for
DBSs, omikli events and other clustered mutations; 15 mutations per
sample wererequired for MBSs and kataegic events; and 10 mutations
were required per sample for clustered indels.

Experimental validation

Asubset of clustered mutational signatures was validated using previ-
ously sequenced invitro cell line models. As done for PCAWG samples,
we generated a background model using SigProfilerSimulator® to
calculate the clustered IMD cut-off for each sample and partitioned
each substitution into the appropriate category of clustered events.
Mutational spectrawere generated for each subclass within each sam-
ple using SigProfilerMatrixGenerator* and were compared against the
denovosignatures extracted from human cancer. The cosine similarity
betweentheinvitro mutational spectraand de novo observed clustered
signatures was calculated to assess the degree of similarity. The average
cosine similarity between two random non-negative vectorsis 0.75,and
the cosine similarities above 0.81 reflect P values below 0.01 (ref. *).

Associations with cancer risk factors

Homologous recombination (HR) deficiency was defined for breast
cancers using the status of BRCA1, BRCA2, RADSICand PALB2%.Samples
with a germline, somatic or epigenetic alteration in one of these genes
were considered HR-deficient, whereas samples without any known
alterationsinthese genes were considered HR-proficient. The number of
clustered indels was compared between HR-deficient and HR-proficient
samples. The smoking status of lung cancers was determined using the
clinical annotation from TCGA (https://portal.gdc.cancer.gov/reposi-
tory). Thenumber of clustered indels associated with tobacco smoking
(ID6) was compared between samples annotated as lifelong non-smokers
and samples annotated as current and reformed smokers. The status of
alcohol consumption was determined using the annotations from the
official PCAWG release (https://dcc.icgc.org/releases/PCAWG). The total
number of clustered indels was compared in samples annotated withno
alcohol consumption and those annotated as daily and weekly drinkers.

Expression of driver genes

AlIRNA-seq expression data were downloaded as a part of the official
PCAWG release (https://dcc.icgc.org/releases/PCAWG). The relative
expression datafound within this release were normalized using FPKM
normalizationand upper quartile normalization. The relative expres-
sion of a gene was compared between those containing clustered or
non-clustered events. Each distribution was then normalized to the
average expression of the wild-type gene. Only genes with at least 10
total events (thatis, clustered and non-clustered mutations) including
atleast 5 clustered events were considered for examination.

SVsand clustered events

Thedistance to the nearest structural variation breakpoint was calcu-
lated for each mutation in each subclass using the minimum distance
to the nearest adjacent upstream or downstream breakpoint. Each

distribution was modelled using a Gaussian mixture with an automatic
selection criterion for the number of components ranging between one
and five components using the minimum Bayesian information criteria
(BIC) across alliterations. Modelling of kataegic events resulted in an
optimalfit of three components, which was used to separate kataegic
substitutions into SV-associated and non-SV associated mutations.
DBSs and MBSs were both modelled using a single Gaussian distribu-
tionrelatingto non-SV associated mutations, whereas omikliand other
clustered mutations were modelled using a mixture of two components,
probably reflecting leakage of smaller kataegic events contributing
to a weak SV-associated distribution. To account for the frequency of
breakpoints across each sample, we normalized the minimum distance
of eachmutationto the nearest SV by calculating the expected distance
between amutationand SV for each sample using the total number of
breakpoints and the overall length of a given chromosome (Extended
DataFig.9a,b). After normalizing the kataegic events, we observed an
optimal solution of two components with one SV-associated distribu-
tion (on average each mutation occurs within one-thousandth of the
expected distance to nearest structural variation) and one non-SV asso-
ciated distribution (on average occurring within the expected distance
tothenearest structural variation). The normalized kyklonic events are
consistent with the non-SV associated distributionreflecting kataegic
events that occur on ecDNA typically of lengths 1-10 Mb (ref. *).

APOBEC3A and APOBEC3B enrichment analysis

The enrichment score of RTCA and YTCA penta-nucleotides quantifies
thefrequency for which each TpCpA>TpKpA mutation occurs ateither
anRTCA or aYTCA context. To account for motif availability, this score
is calculated using the +20 bp sequence context around each mutation
and normalized by the number of cytosine bases and C>N mutations
within the set of 41-mers surrounding each mutation of interest’.

APOBEC3 gene expression and kyklonas

AlIRNA-seq expression data were downloaded as a part of the official
PCAWG release (https://dcc.icgc.org/releases/PCAWG). The relative
expression datafound within this release were normalized using FPKM
normalization and upper quartile normalization. The APOBEC3A/B
normalized expression was compared between samples containing
ecDNA versus samples with no detected ecDNA and between samples
with kyklonas and without kyklonas. All P values were generated using
aMann-Whitney U-test and were corrected for multiple hypothesis
testing using the Benjamini-Hochberg FDR procedure.

Circular ecDNA and kataegis

The collection of ecDNA ranges was intersected with the catalogue
of clustered mutations, which was used to determine the overlapped
mutational burden for each subclass of clustered event and the muta-
tional spectra of overlapping kataegic events. Enrichments of events
were calculated using statistical background models generated using
SigProfilerSimulator® that shuffled the dominant mutationin each
clustered event across the genome (that is, the most frequent muta-
tion typein a single event). The decomposed kyklonic mutational
spectra were generated using the decomposition module within
SigProfilerExtractor®®. Only mutational signatures that increased
the overall cosine similarity by at least 0.01 were used. In both the
original and validation cohorts, SBS2 and SBS13 were sufficient to
explain the kyklonic mutational spectrawith no other known muta-
tional signature increasing the cosine similarity by more than 0.01.
Comparisons between ecDNA with and without cancer genes were
performed using the set of cancer genes from the Cancer Gene Cen-
sus (CGC)®, All statistical comparisons and P values were calculated
using atwo-tailed Mann-Whitney U-test unless otherwise specified.
For each set of tests, P values were corrected for multiple hypoth-
esis testing using the Benjamini-Hochberg FDR procedure. The
predicted effect of each overlapping variant was determined using
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ENSEMBL’s Variant Effect Predictor tool by reporting only the most
severe consequence®.

Overall survival and clustered mutations

All survival analyses, including the generation of Kaplan—-Meier
curves, Cox regressions and log-rank tests, were performed using
the Lifelines Python package (v.0.24.4). Across the 30 distinct
whole-genome-sequenced cancer typesincluded inthe PCAWG study,
only 6 cancer types contained enough samples to examine the asso-
ciations between survival and overall number of clustered mutations.
The sufficient sample size criteriarequired more than 50 samples with
survival end-points with at least 30 of the samples with an observed
clustered event. Each cancer type was analysed separately by comparing
the survival of samples with a high clustered mutational burden (top
80th percentile across a given cancer type) to the survival of samples
with alow clustered mutational burden (bottom 20th percentile across
agiven cancer type).

Analysis of whole-exome-sequenced samples from TCGA was altered
to reflect the limited resolution for identifying clustered mutations
within the exome. Specifically, SigProfilerSimulator (v.1.0.2)* was used
to derive an IMD cut-off for each sample based on the TMB within the
exome and the mutational patterns for agiven sample. Mutations were
randomly shuffled while maintaining the mutational burden within
the exome of each chromosome, the +2 bp sequence context for each
mutationand the transcriptional strand bias ratios across all mutations.
Each samplewas simulated 100 times and an IMD cut-off was calculated
using the same methods as outlined for the detection of clustered
events within PCAWG. Owingto the limited number of detected events,
22 cancer types had sufficient data to perform survival analysis. Each
cancer type was analysed separately by comparing samples with at
least a single clustered event to samples with no detected clustered
events within the exome.

Forboth PCAWG and TCGA analyses, survival distributions within
agiven cancer type were compared using alog-rank test. Cox regres-
sions were performed to determine hazards ratios and to correct for
age and total mutational burden. All P values were also corrected
for multiple hypothesis testing using the Benjamini-Hochberg FDR
procedure.

Toinvestigate differential survival associated with the detection of
clustered events within cancer driver genes, Kaplan-Meier survival
curves were compared between individuals with clustered versus
non-clustered mutations within a given cancer driver gene. The dis-
tributions were compared using alog-rank test. Cox regressions were
performed to determine the hazards ratios and to correct for age,
total mutational burden and cancer type across TCGA. Cox regres-
sions performed for the MSK-IMPACT cohort were corrected for total
mutational burdenand cancer type. No corrections were performed for
age asthese metadata were not available for the MSK-IMPACT cohort.
All Pvalues were also corrected for multiple hypothesis testing using
the Benjamini-Hochberg FDR procedure.

Validation of kyklonasin three cohorts

All three validation cohorts were analysed analogous to the PCAWG
cohorts. Specifically, clustered mutations were classified by calculating
asample-dependent IMD threshold for clustered versus non-clustered
mutations using a background model generated by SigProfilerSimula-
tor®™, All clustered mutations were subclassified into DBS, MBS, omikli,
kataegis or other mutations. AmpliconArchitect (v.1.2) was used to
determine regions of focal amplifications®®, which were used for sub-
sequent validation of kyklonic events by overlapping kataegic events
with all detected focal amplifications. The decomposed kyklonic muta-
tional spectrawere generated using the decomposition module within
SigProfilerExtractor®. Only mutational signatures that increased the
overall cosine similarity by at least 0.01 were used. Inboth the original
and validation cohorts, SBS2 and SBS13 were sufficient to explain the

kyklonic mutational spectra with no other known mutational signature
increasing the cosine similarity by more than 0.01.

Cancer-type abbreviations

Biliary-AdenoCA, biliary adenocarcinoma; Bladder-TCC, bladder
transitional cell carcinoma; Bone-Epith, bone epithelioid; Bone-Lei-
omyo, bone leiomyosarcoma; Bone-Osteosarc, bone osteosarcoma;
Breast-AdenoCA, breast adenocarcinoma; Breast-LobularCA, breast
lobular carcinoma; CNS-GBM, glioblastoma (central nervous system);
CNS-Medullo, medulloblastoma (central nervous system); CNS-Oligo,
oligodendroglioma (central nervous system); CNS-PiloAstro, pilo-
cytic astrocytoma (central nervous system); Cervix-AdenoCA, cer-
vix adenocarcinoma; Cervix-SCC, cervix squamous cell carcinoma;
ColoRect-AdenoCA, colorectal adenocarcinoma; Head-SCC, head
and neck squamous cell carcinoma; Kidney-ChRCC, chromophobe
renal cell carcinoma; Kidney-RCC, renal cell carcinoma; Liver-HCC,
hepatocellular carcinoma; Lung-AdenoCA, lung adenocarcinoma;
Lung-SCC, lung squamous cell carcinoma; Lymph-BNHL, B-cell non-
Hodgkin lymphoma; Lymph-CLL, chronic lymphocytic leukaemia;
Lymph-NOS, metastatic lymphoma; Myeloid-AML, acute myeloid leu-
kaemia; Myeloid-MPN, myeloproliferative neoplasm; Oeso-AdenoCA,
oesophageal adenocarcinoma; Ovary-AdenoCA, ovary adenocarci-
noma; Panc-AdenoCA, pancreatic adenocarcinoma; Panc-Endocrine,
pancreatic neuroendocrine carcinoma; Prost-AdenoCA, prostate
adenocarcinoma; Skin-Melanoma, malignant melanoma; Stomach-
AdenoCA, stomach adenocarcinoma; Thy-AdenoCA, thyroid adeno-
carcinoma; Uterus-AdenoCA, uterine adenocarcinoma.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

No data were generated specifically for this study. All data were
and can be downloaded from the appropriate links, repositories
and references. Specifically, for the discovery cohort, all data and
metadata were obtained from the official PCAWG release (https://
dcc.icgc.org/releases/PCAWG). All data and metadata for TCGA
samples were obtained from the GDC (https://gdc.cancer.gov/).
Genomics data for clonally expanded cell lines were downloaded
from the European Genome-phenome Archive (EGAD00001004201,
EGAD00001004203 and EGAD00001004583). For the three valida-
tion cohorts, datasets were downloaded as submitted by the original
publications and genomics datawere downloaded fromtheir respective
repositories: EGAD00001004162 for 61 undifferentiated sarcomas**
(European Genome-phenome Archive); EGAD00001006868 for 187
high-confidence oesophageal squamous cell carcinomas*® (Euro-
pean Genome-phenome Archive); and phs001697.v1.pl for 280 lung
adenocarcinomas® (dbGaP). Somatic mutations and metadata for the
MSK-IMPACT Clinical Sequencing Cohort composed 0f10,000 clinical
cases** were downloaded from cBioPortal (https://www.cbioportal.
org/study/summary?id=msk_impact_2017).

Code availability

The SigProfiler compendium of tools are developed as Python pack-
ages and are freely available for installation through PyPI or directly
through GitHub (https://github.com/AlexandrovLab/). For all tools,
each package is fully functional, free and open sourced distributed
under the permissive 2-Clause BSD License and is accompanied by
extensive documentation: (1) SigProfilerMatrixGenerator> (v.1.2.0;
https://github.com/AlexandrovLab/SigProfilerMatrixGenerator); (2)
SigProfilerSimulator (v.1.0.2; https://github.com/AlexandrovLab/
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SigProfilerSimulator); and (3) SigProfilerExtractor®® (v.1.1.0; https://
github.com/AlexandrovLab/SigProfilerExtractor). Each SigProfiler
tool also has an R wrapper available for installation through the GitHub
repositories. AmpliconArchitect® (v.1.2) is also freely available and
can downloaded from https://github.com/virajpdeshpande/Ampli-
conArchitect. The core computational pipelines used by the PCAWG
Consortium for alignment, quality control and variant calling are
available to the public at https://dockstore.org/search?search=pcawg
under the GNU General Public License v.3.0, which allows for reuse
and distribution.
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Extended DataFig.1|Identification and clinical associations of clustered whiskers extend from the box by 1.5x the inter-quartile range (IQR). g, Kaplan-
events. a, Schematic depiction for separating clustered mutations fora Meier curves between samples with high (top 80" percentile) and low (bottom
sample. b, Subclassification of clustered substitutions and indels. Expected 20" percentile) clustered substitution (left) orindel (right) burdensin PCAWG
IMD derived using steps 2and 3 (a). ¢, Distribution of indels presentin asingle ovarian cancer. h, Cox regressions performed for PCAWG cancer types while
clustered event.d, Distribution of clustered substitutions (left) and indels correcting forage (n=20 upper and n=21lower clustered substitutions; n =49
(right) across cancers with less than 10 samples subclassified into different upper and n=49 lower clustered indels). i, Kaplan-Meier survival curves for
categories. e, Correlations between TMB of each sample, the TMB within the TCGA cancer types with a differential patient outcome associated with the
exome, or the TMB for each class of clustered substitutions (left) and indels detection of any clustered mutations. j, k, Cox regressions performed for
(right).f, Distribution of VAFs for all clustered substitution classes (left; DBS: TCGA samples while correcting for age (j) and total mutational burden (k) (OV:
1,215 samples; MBS: 851; omikli:1,466; kataegis: 1,108; other: 335) with the n=111upper, n=159 lower clustered substitutions; UCEC: n =322 upper, n = 64
average fold enrichment compared against non-clustered mutations (right). lower; ACC: n =24 upper, n=67 lower). PCAWG ovarian cancers were included
Foreachboxplot, the middleline reflects the median, the lower and upper ink. Centre of measure for each Cox regressionreflects thelog,,(Hazards

bounds correspond to the first and third quartiles, and the lower and upper ratios) with the 95% confidence intervals in h-k).
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Extended DataFig.2|Denovosignatures of DBS and MBS signatures. a, The
activity of DBS de novo signatures (top) and the corresponding signatures
extracted from prostate, skin, stomach, and uterine cancers that could not be
accurately reconstructed using known COSMIC mutational signatures
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(bottom; Methods). b, Theactivity of MBS de novo signatures (top) and the
correspondingsignatures extracted fromcolon, oesophagus, and head and
neck cancers that could not be accurately reconstructed using known COSMIC
mutational signatures (bottom; Methods).
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Extended DataFig. 3 | Experimental validation and epidemiological
associations of clustered mutational processes. a, Experimental validation
of three omikli processes. Specifically, APOBEC3-associated omikli were
validated using a clonally expanded BT-474 breast cancer cell line (top), omikli
eventsresulting from exposure to benzo[alpyrene were validated using iPS
cells (middle), and omikli events resulting from exposure to ultraviolet light
were validated using iPS cells (bottom). b, Mutational processes of
strand-coordinated kataegic events. ¢, Epidemiological associations
comparing theratio of clustered TMB to the total TMB for agiven sample
between:drinkers (n=25) and non-drinkers (n = 61); smokers (n = 68) and

non-smokers (n =11); homologous-recombination deficient (HR-deficient;
n=25)and homologous-recombination proficient samples (HR-proficient;
n=64).Foreachboxplot, the middle linereflects the median, the lower and
upperbounds of thebox correspond to the first and third quartiles, and the
lower and upper whiskers extend from the box by 1.5x the inter-quartile range
(IQR). P-values were calculated using a two-tailed Mann-Whitney U-test.

d, Mutational processes of clustered events with inconsistent VAFs classified
asother clustered substitutions. Aminimum of two samples are required per
cancertype for visualization (Methods).
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Extended DataFig. 5| Mutational processes of clustered driver events.

a, The percentage of clustered driver substitutions and indels within each
cancer type. Allsamples 2,583 whole-genome sequenced samples from
PCAWG with adetected driver eventareincluded; however, cancer types with
fewer than10 samples are not presented. b, The proportion of clustered driver
mutations per cancer gene compared between oncogenes (n =19 genes) versus
tumour suppressor genes (n =30 genes) and genes with high numbers of
isoforms (n =17) versus genes with low numbers of isoforms (n =23; upper and
lower quartiles of isoforms across all cancer drivers). ¢, The proportion of
clustered driver mutations for a given subclass per cancer gene compared
betweenoncogenes (n =17 genes with clustered substitutionsand n =13 with
for clustered indels) versus tumour suppressor genes (n =28 genes with
clustered substitutions and n =70 genes with clustered indels). d, The relative

expression of driver genes containing clustered (copper) versus non-clustered
events (green). Allexpression values were normalized using FPKM
normalizationand upper quartile normalization obtained from the official
PCAWG release and were subsequently normalized using the average
expression of the wild-type gene. A value of 1 (dashed lined) reflects no
differencein expression comparedto the wild-type gene. e, The proportional
activity of mutational signatures contributing to clustered driver events within
each subclass. MBSs did not contribute to any reported driver events. For
analysesinb-d, p-values were generated using a two-tailed Mann-Whitney
U-test (*P < 0.05; p =0.03 for STAT6; p = 0.04 for CTNNBI; p = 0.02 for BTGI). For
each boxplot, the middle line reflects the median, the lower and upper bounds
ofthe box correspond to the firstand third quartiles, and the lower and upper
whiskers extend from the box by 1.5x the inter-quartile range (IQR).
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Extended DataFig. 6 | Clustered events and structural variations. a, The
proportion of all clustered events co-locating with structural variations across
allcancertypes (left) and across each cancer type (right). b, The distance to the
neareststructural variation for each class of clustered mutations (teal), and
non-clustered mutations (red). The distribution for each class of clustered
events were modelled using a Gaussian mixture (blue line). DBSs and MBSs
were modelled using asingle distribution, whereas omikli, other, and indels
were modelled using two components reflecting the minimal distribution of
overlap with structural variations. ¢, The mutational signatures activein
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non-ecDNA kataegis (top) and non-SV associated kataegis (bottom), where
YTCA and RTCA enrichment is suggestive of APOBEC3A or APOBEC3B activity,
respectively. Genic mutations were divided into transcribed (template strand)
and coding mutations. The RTCA/YTCA fold enrichments were compared to
the fold enrichments of non-clustered mutations (p-values calculated using
two-tailed Mann-Whitney U-tests and corrected for multiple hypothesis
testing using the Benjamini-Hochberg FDR procedure).
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Extended DataFig.7 | Recurrent mutagenesis and functional effects of
kyklonas. a, The total number of recurrently mutated ecDNA displayed as a
proportion of the total number of ecDNA with kyklonas foragiven cancer type.
The totalnumber of ecDNA with kyklonas are displayed above each bar plot for
eachcancertype. AllecDNA withrecurrent hypermutation were considered
enriched for kyklonic events after correcting for multiple hypothesis testing
(Z-scoretest; g-values < 0.05). b, Proportion of samples containingecDNA
divided exclusively into those with co-occurring kataegis, no kataegis overlap,
and nodetected kataegis across the entire genome. The number of samples

includedineachcancertypearelisted. Forcertain cancertypes, as few as
asinglesample may represent the entire proportional breakdown (for example,
Bone-Osteosarc or Bone-Epith). ¢, Asingle sarcomagenome and d, asingle
head squamous cell carcinoma genome depicting the overlap of kataegis
withecDNA regions displayed as arainfall (top left) withasinglezoomedin
ecDNArepresented usingacircos plot (top right). Bottom: Two regions of the
ecDNA with overlapping kyklonic events. VAFs are shown per event (orange).

e, Kyklonic substitutions resulting in recurrent coding mutations withinknown
cancer genes.
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Extended DataFig. 8| Validation of APOBEC3 hypermutation of ecDNA in
threeindependentcohorts. a, Distribution of clustered substitutions (left)
and clusteredindels (right) across three validation cohorts. Clustered
substitutions were subclassified into DBSs, MBSs, omikli, kataegis, and other
clustered mutations. Top: Each black dot represents asingle cancer genome.
Redbarsreflect the median clustered TMB and the percentage of clustered
mutations contributing to the overall TMB of a given sample for each cancer
type.Middle: The proportion of each subclass of clustered events for a given
cancer type with the totalnumber of samples having at least asingle clustered
eventover the total number of samples within a given cancer cohort. Bottom:
Percentage of clustered mutations compared to the percentage of clustered
driver events for substitutions (left) and indels (right). P-values were calculated
using aFisher’s exact testand corrected for multiple hypothesis testing using

Samples with ecDNA

(APOBEC3B associated)

Benjamini-Hochberg FDR procedure. b, Left: The mutational spectrum of all
kyklonas across the validation cohorts. Right: The proportion of kyklonic
eventsattributed to SBS2 and SBS13 (p-value determined using a Z-score test;
Methods). ¢, The proportion of samples with ecDNA that co-occur with
kataegis, do not co-occur with kataegis, or do not have any detected kataegic
activity acrosseach cohort.d, YTCA versus RTCA enrichments per sample with
kyklonas, where YTCA and RTCA enrichmentis suggestive of higher APOBEC3A
or APOBEC3B activity, respectively. The RTCA/YTCA fold enrichments were
compared to the fold enrichments of non-clustered mutations (p-values
calculated using a two-tailed Mann-Whitney U-test). e, The proportion of
ecDNA with kyklonas that contain multiple kyklonic events. The total number
ofecDNAwithkyklonas are displayed above each bar plot for each cancer type.
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cohorts (left) and PCAWG (right). A value of 1 (dashed line) reflects adistance
thatone would expect based on the random placement of amutationacross the
chromosome, whereas a value less than1reflects amutation occurring closer
thanwhatisexpected by random chance. The distributions of kataegic
mutations were modelled using Gaussian mixture models (blue lines) with an
automatic selection criterion for the number of components using the
minimum Bayesian information criteria (BIC).
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Data collection No data were generated specifically for this study. All data were and can be downloaded from the appropriate links, repositories, and
references. Specifically, for the discovery cohort, all data and metadata were obtained from the official PCAWG release: https://dcc.icgc.org/
releases/PCAWG. All data and metadata for TCGA samples were obtained from GDC: https://gdc.cancer.gov/. Genomics data for clonally
expanded cell lines were downloaded from European Genome-phenome Archive: EGAD00001004201, EGAD00001004203, and
EGAD00001004583. For the three validation cohorts, datasets were downloaded as submitted by the original publications and genomics data
were downloaded from their respective repositories: EGAD00001004162 for 61 undifferentiated sarcomas (European Genome-phenome
Archive), EGAD00001006868 for 187 high-confidence esophageal squamous cell carcinomas (European Genome-phenome Archive), and
phs001697.v1.p1 for 280 lung adenocarcinomas (dbGaP). Somatic mutations and metadata for the MSK-IMPACT Clinical Sequencing Cohort
composed of 10,000 clinical cases were downloaded from cBioPortal: https://www.cbioportal.org/study/summary?id=msk_impact_2017.

Data analysis The SigProfiler compendium of tools are developed as Python packages and are freely available for installation through PyPI or directly
through GitHub (https://github.com/AlexandrovLab/). For all tools, each package is fully functional, free, and open sourced distributed under
the permissive 2-Clause BSD License and are accompanied by extensive documentation: (i) SigProfilerMatrixGenerator (version 1.2.0; https://
github.com/AlexandrovLab/SigProfilerMatrixGenerator); (ii) SigProfilerSimulator: (version 1.0.2; https://github.com/AlexandrovLab/
SigProfilerSimulator); (iii) SigProfilerExtractor: (version 1.1.0; https://github.com/AlexandrovLab/SigProfilerExtractor). Each SigProfiler tool also
has an R wrapper available for installation through the GitHub repositories. AmpliconArchitect (version 1.2) is also freely available and can
downloaded from https://github.com/virajbdeshpande/AmpliconArchitect. The core computational pipelines used by the PCAWG Consortium
for alignment, quality control and variant calling are available to the public at https://dockstore.org/search?search=pcawg under the GNU
General Public License v.3.0, which allows for reuse and distribution.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

No data were generated specifically for this study. All data were and can be downloaded from the appropriate links, repositories, and references. Specifically, for
the discovery cohort, all data and metadata were obtained from the official PCAWG release: https://dcc.icgc.org/releases/PCAWG. All data and metadata for TCGA
samples were obtained from GDC: https://gdc.cancer.gov/. Genomics data for clonally expanded cell lines were downloaded from European Genome-phenome
Archive: EGAD00001004201, EGAD00001004203, and EGADO0001004583. For the three validation cohorts, datasets were downloaded as submitted by the original
publications and genomics data were downloaded from their respective repositories: EGAD00001004162 for 61 undifferentiated sarcomas (European Genome-
phenome Archive), EGAD00001006868 for 187 high-confidence esophageal squamous cell carcinomas (European Genome-phenome Archive), and phs001697.v1.p1
for 280 lung adenocarcinomas (dbGaP). Somatic mutations and metadata for the MSK-IMPACT Clinical Sequencing Cohort composed of 10,000 clinical cases were
downloaded from cBioPortal: https://www.cbioportal.org/study/summary?id=msk_impact_2017.
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Sample size No sample size calculation was performed as no data were being generated. Rather, all publicly available samples were utilized in our analysis
and, for each comparison sufficient numbers were determined based on a FDR-corrected statistically significant p-value and magnitude of
effect size. Overall, the study utilized the complete set of 2,583 white-listed whole-genome sequenced samples from PCAWG along with their
corresponding list of consensus driver events. Samples were taken as provided by the PCAWG consortium. Extrachromosomal-DNA (ecDNA)
can be unambiguously assigned to 1,291 of these samples. Validation cohorts included 61 sarcomas, 280 lung cancers, and 186 esophageal
squamous cell carcinomas.

Data exclusions  No samples were exclude in the discovery PCAWG cohort. All PCAWG cancer types with more than 10 samples are presented within the main
figures while cancer types with less than 10 samples are included in Extended Data Figures. In the validation esophageal cohort, only high-
confidence esophageal squamous cell carcinomas were used as annotated in the submission to the data repository. No samples were
excluded from the sarcoma and lung cancer validation cohorts.

Replication Replication of genomics analyses encompassed three independent cohorts and a total of 527 additional whole-genome sequenced samples,
including: 61 sarcomas, 280 lung cancers, and 186 esophageal squamous cell carcinomas. The results from the genomics analyses of PCAWG
were replicated three times -- one per each validation cohort. Additionally, the MSK-IMPACT Clinical Sequencing Cohort composed of 10,000
clinical cases was used for clinical validation. The results from the clinical analysis of TCGA clustered cancer genes was replicated one time -- in
the MSK-IMPACT Clinical Sequencing Cohort.

Randomization  There was no sample randomization in this study. Rather, the performed statistical analyses controlled for most known confounders.
Specifically, in the clinical association analyses, we corrected for age of diagnosis (where available), tumor mutational burden, and cancer
type. For most statistical comparisons between clustered mutations, a correction was performed based on observed behavior of non-
clustered mutations.

Blinding Detection of clustered mutations was performed independently and in a blinded manner in regard to driver mutations, overall survival, and
identification of extrachromosomal-DNA (ecDNA).

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems

Methods
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