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To understand the role of extrachromosomal DNA (ecDNA) amplifications
in cancer progression, we detected and classified focal amplificationsin
8,060 newly diagnosed primary cancers, untreated metastases and heavily
pretreated tumors. The ecDNAs were detected at significantly higher
frequency in untreated metastatic and pretreated tumors compared to
newly diagnosed cancers. Tumors from chemotherapy-pretreated patients
showed significantly higher ecDNA frequency compared to untreated
cancers. In particular, tubulin inhibition associated with ecDNA increases,
suggesting arole for ecDNA in treatment response. In longitudinally
matched tumor samples, ecDNAs were more likely to be retained compared
to chromosomal amplifications. ECDNAs shared between time points,

and ecDNAs inadvanced cancers were more likely to harbor localized
hypermutation events compared to private ecDNAs and ecDNAs in newly
diagnosed tumors. Relatively high variant allele fractions of ecDNA localized
hypermutations implicated early ecDNA mutagenesis. Our findings
nominate ecDNAs to provide tumors with competitive advantages during
cancer progression and metastasis.

Disease progression, including metastasis, isaleading cause of death
from cancer as tumors acquire resistance and become increasingly
less responsive to therapies'”. Characterizing the genomic features
of primary untreated and metastatic treated tumors is critical to
improving our understanding of the processing driving cancer
progression®*. Cancer is driven by genomic alterations, including
focal DNA amplifications, in which DNA segments containing onco-
genes or oncogenic regulatory elements are multiplied, resulting in
oncogene transcription and activation®. Amplifications may occur
through mechanisms tethered to chromosomes, forming homo-
geneously staining regions (HSRs), or by excising and circularizing
DNA segments to form extrachromosomal DNA (ecDNA) elements®’.
HSRs and ecDNAs both create gene amplification, but their functional
consequences may vary®’. ECDNAs replicate with the linear genome
but lack centromeres, resulting in uneven segregation and enabling

rapid accumulation of ecDNAs in tumor cell nuclei®. If the ecDNA
endows the tumor cell with a competitive advantage, cells contain-
ingecDNAs undergo selection, creating adominant tumor cell clone
driven by an ecDNA-activated oncogene®. The ecDNAs are detected
inmost human cancer types at the time of diagnosis and are enriched
in poor prognosis tumor types such as glioblastoma, sarcoma and
esophageal carcinoma®. However, the role of ecDNAs in advanced
cancers remains unclear.

The genes carried on or activated by ecDNAs include ERBB2,
EGFR and CDK4, which are targets of commonly used inhibitors for
the treatment of patients with cancer. In addition, oncogenes that
are considered undruggable are detected on ecDNAs, such as MYC,
TERT and MCL1.Infact, all genes known to be focally amplified in can-
cer are detected on ecDNAs in some tumors®'>"®>, The discovery of
ecDNA clusters that appear to function as hubs where transcriptional
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Fig.1|Sample classification. a, Schematic dataset overview. b, Overview of
sample classification for 1,490 patients in the primary cancer cohort and 2,440
patientsin the advanced cancer. Only tumor types with at least 20 patients in
each cohortwereincluded. ¢, Average number of ecDNA and ChrAmp amplicons
detected per ecDNA patient and ChrAmp patient, respectively. Tumor lineages
represented by at least 20 tumors in both cancer cohorts are included. Numbers
in parentheses indicate the number of patients. Points represent mean values,
and error bars show a 95% CI. Pvalues were computed using a two-sided Mann-
Whitney Utest.d, Percentage of ecDNA samples. e, The average number of
distinct ecDNA amplicons per sample in primary and advanced cancer cohorts,
showing tumor lineage represented by at least 20 tumors in both cohorts.
Pvalues were computed using a one-sided binomial test with the ecDNA-carrying
tumor fractionin the primary cancer cohort as a null probability ind and using a
one-sided Mann-Whitney Utest in e where not significant unless noted otherwise.

f, Number of kataegis events normalized by the number of intervals present on
ecDNA or ChrAmp ampliconsin the primary and advanced cohorts, respectively.
Numbersindicate the number of amplicons. Bars represent mean values, and
error bars show 95% Cls. Pvalues were computed using a two-sided Mann-
Whitney Utest. Asterisks indicate level of significance: *1.00 x 102 < P<5.00 x 1072,
*1.00 x10<P<1.00x1072,**1.00 x 10 < P<1.00 x10and ***P<1.00 x 107,
NS, not significant; GBM, glioblastoma multiforme; SARC, sarcoma; KIRC,

kidney renal clear cell carcinoma; PACA, pancreatic cancer; PAEN, pancreatic
cancer endocrine neoplasms; BLCA, bladder urothelial carcinoma; LUAD, lung
adenocarcinoma; LICA, liver cancer; COADREAD, colorectal cancer; PRAD,
prostate adenocarcinoma; HNSC, head and neck squamous cell carcinoma;
ESCA, esophageal carcinoma; BRCA, breast invasive carcinoma; STAD, stomach
adenocarcinoma; OV, ovarian serous cystadenocarcinoma; UCEC, uterine corpus
endometrial carcinoma.
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machinery is assembled and shared”"*, the absence of centromeres that
resultsin uneven segregation'-”, the detection of ecDNA sequencesin
micronuclei'®” and the enrichment of enhancer elements on ecDNA
molecules'®” contribute to the hypothesis that proteins regulating
ecDNA-related processes may represent potent drug targets. Effective
targeting of ecDNA elements requires understanding the role of ecDNA
during cancer progression.

Here we have compared ecDNA frequencies and properties in
cancers at the time of diagnosis and at later stages of disease to evaluate
whether ecDNAs act as drivers of tumor evolution”. We determined the
presence of ecDNAs through a computationally intensive and stand-
ardized analysis pipeline to uniformly process 8,060 whole-genome
sequencing (WGS) datasets generated from biopsy specimens obtained
from patients at cancer diagnosis and in patients with advanced pre-
treated and/or metastatic cancer, including 231 cases with multiple
time-separated specimens.

ecDNAs are frequently detected in advanced tumors

We determined theincidence of ecDNA in progressed tumors through
analysis of WGS datasets from 4,170 advanced cancer samples, derived
from 4,170 patients, available through the Hartwig Medical Founda-
tion (HMF)*., The HMF cohortincluded tumors from 2,333 pretreated
patients, 1,191 untreated patients and 646 patients with unknown
treatment status. We compared HMF results with those derived from
analyzing the whole genomes of 3,464 newly diagnosed tumors and
226 pretreated tumors from The Cancer Genome Atlas-the Interna-
tional Cancer Genomics Consortium (TCGA-ICGC)®and 100 matching
primary-recurrent pairs from the Glioma Longitudinal Analysis (GLASS)
consortium®. The datasets were analyzed using AmpliconSuite-pipeline
(v.0.1344.2) to detect focally amplified genomic loci and reconstruct
the structures of the resulting amplicons from the whole-genome
sequences from all 8,060 samples. The AmpliconSuite-pipeline
includes the AmpliconArchitect?? method to derive amplicon struc-
tures and the AmpliconClassifier to assign amplicons to an amplicon
class (Supplementary Table1)”’. Amplicons carryinga circular amplicon
structure signature were classified as ecDNA, and noncircular ampli-
cons were grouped into the chromosomal amplification (ChrAmp)
class®. Intotal, across 8,060 tumors, we detected 2,602 ecDNA ampli-
cons and 8,594 ChrAmp amplicons. We further assigned sample-level
classes, labeling tumors containing at least one ecDNA amplicon as
ecDNA and samples with at least one noncircular amplicon as ChrAmp.
Tumorslackingamplicons were labeled ‘no focal somatic copy-number
amplification’ (NoAmp).

To be able to evaluate ecDNA frequencies between cohorts, we
determined whether tumor purity and sequencing depth impacted
the sensitivity of amplicon detection. We observed that a reduced
number of ecDNAs were detected in samples withan average coverage
of less than ten times (Extended Data Fig. 1a). Additionally, we found
a significant difference in ecDNA frequency between ICGC and HMF
samples in tumor purity bins 0.3-0.4 and 0.4-0.5 (Extended Data
Fig.1b). Comparisons in the TCGA cohort were limited by low sample
numbers, followingfiltering of the <10x samples. Based on this observa-
tion, we additionally removed samples with tumor purity less than 0.4
from comparisons between cohorts. Asaresult, 2,196 TCGA-ICGC and
3,045 HMF tumors passed allfiltering criteria. These samples were then
used to construct atissue-matched primary cancer cohort (n=1,490)
consisting of newly diagnosed and untreated TCGA-ICGC tumors
and an advanced cancer cohort (n =2,440) comprising metastatic
and/or pretreated tumors from TCGA-ICGC and HMF, by including
only tumor types represented by at least 20 samples in both primary
and advanced cohorts (Fig. 1a and Extended Data Fig. 1c). After apply-
ing the same filters on 508 paired primary and recurrent/metastatic
specimens, a longitudinal cohort consisting of 306 multitime point
samples from 153 patients was created across TCGA, HMF and GLASS
cohorts (Extended Data Fig. 1d).

At least one ecDNA was detected in 346 (23.2%) tumors from the
primary cancer cohort and 777 tumors (31.8%) of the advanced cancer
cohort (Fig.1b and Extended DataFig. 2a). A significantly larger fraction
of the advanced cancer cohort harbored ecDNA and ChrAmp ampli-
fications, and the average number of ecDNAs and ChrAmp amplicons
per tumor inboth amplicon classes was comparable between cohorts
(Fig. 1c). We performed a resampling analysis in which tumor-type
distribution was equal between cohorts, which confirmed that the
increasein ecDNA and ChrAmp frequenciesin advanced cohort tumors
was independent of tumor lineage (Extended Data Fig. 2b). We con-
firmed high frequencies of samples containing ecDNA amplicons in
glioblastomas (76%), esophageal carcinoma (52%) and bladder car-
cinoma (50%) cancers from the primary cancer cohort (Fig. 1d)%. The
fraction of ecDNA samples and the average number of ecDNAs per
samplesignificantlyincreasedin the advanced cancer cohortclear cell
renal and esophageal carcinoma, colorectal, prostate and breast can-
cer (Fig.1e).In contrast, we observed a significant decrease in ecDNA
sample fraction and ecDNA countinglioblastoma, sarcoma, head and
neck and ovarian carcinoma. ChrAmp sample fraction and ChrAmp
amplicon counts were observed to follow similar patterns (Extended
Data Fig. 2c-e). These observations suggested that the driving roles
of ecDNA and chromosomal amplicons may vary by tumor lineage.

We evaluated the genomic characteristics of amplicons and found
that the presence of an oncogene on the ampliconis the major determi-
nant of amplicon complexity, whichis acomposite value based on the
distribution of copy numbers assigned to reconstructions of the focal
amplification’s genome structure and the total number of genomic
segments comprising an amplicon®. This was true for both ecDNA and
ChrAmp (Extended DataFig.3a-c). Amplicon complexity, copy number
and size did not significantly differ between primary and advanced
cancer cohorts. Increased genome ploidy, whole-genome duplication
and microsatellite instability but not homologous recombination
associated with higher rates of ecDNA and contributed to theincreased
rates of ecDNA in the advanced cohort (Extended Data Fig. 3d-g and
Extended DataFig.4a-d). The observedincreased frequency of ecDNA
in tumors of the advanced cohort is thus, in part, explained by the
higher levels of ploidy and whole-genome duplication.

Localized hypermutation (kataegis) has been reported to occur
frequently on ecDNAs in primary tumors®**. We confirmed the fre-
quent co-occurrence of kataegis on ecDNA and ChrAmp amplicons
in primary cancer tumors (Fig. 1f). As localized hypermutations often
happeninthe context of single- and double-strand DNA break repair?,
we normalized the frequency of clustered mutation events by the
number of amplicon intervals. Kataegic clustered mutation events
were detected at significantly higher rates in oncogene-containing
but not nononcogenic ecDNAs, from the advanced cancer cohort
and relative to the primary cancer cohort (Extended Data Fig. 4e).
The significant difference in kataegis frequency was also observed
amongbreast cancers, the largest cohort of asingle tumor type within
our datasets (Extended Data Fig. 4f). Our results suggest that ecDNAs
containing oncogenes and kataegis are most likely to be detected as
tumors progress.

Clinical associations of ecDNA across cancers

We previously showed that the presence of anecDNA amplicon is associ-
ated with poor prognosis in newly diagnosed tumors®. We confirmed
thisassociationinthe primary and advanced cancer cohorts (Fig. 2a).
A multivariate analysis that additionally considered primary tumor
location, primary versus advanced cohort, sex, age across multiple
bins, whole-genome doubling status, microsatellite instability sta-
tus, homologous recombination status and tumor stage showed that
the presence of ecDNA was associated with an increase hazard ratio
(P<0.001ecDNA versus NoAmp, P=0.002 ChrAmp versus NoAmp;
Pvalues by multivariate cox proportional-hazard model; Extended
DataFig. 5a).
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Fig. 2| Clinical associations. a, Five-year Kaplan-Meier survival curves by
amplification category using patients. The Pvalue derived from comparing

the survival curves was based on alog-rank test in the primary and advanced
cohorts, separately. b, Distribution of the number of distinct ecDNA and ChrAmp
amplicons by pretreatment status across primary, untreated advanced cancers
and pretreated advanced cancer tumors. Pretreated advanced cancer tumors
show asignificantly higher number of distinct ecDNAs and ChrAmps per tumor
compared to primary cancer or untreated advanced cancer tumors (two-sided
Mann-Whitney Utest). Y axis represents the number of distinct ecDNA and
ChrAmp amplicons detected per tumor. Numbers indicate patient counts. All
tumors with available pretreatment information were included in the analysis.
Points represent mean values, and error bars show 95% Cls. ¢, Distribution

Consolidated pretreatment type

of the number of distinct ecDNA and ChrAmp amplicons by the number of
pretreatments received across pretreated HMF advanced cancers. Pvalue

was calculated using a two-sided Mann-Kendall trend test. Points represent
mean values, and error bars show a 95% CI. Only patients with available clinical
information were included. Numbers indicate the number of patients. d, Distri-
bution of the number of distinct ecDNA and ChrAmp amplicons by different
prebiopsy treatment types in the advanced cancer cohort. ‘Untreated’ category
onlyincludes tumors from the advanced cohort. Number of patients per category
isshown on the bottom. Only treatment types used in more than 50 patients are
shown. Pvalues were calculated using a two-sided Mann-Whitney U'test. Points
represent mean values, and error bars show a 95% CI.

Many but not all patients included in HMF have previously under-
gone cancer therapy, which can alter the genomic properties of the
tumor?. Untreated HMF patients (n = 542) were in majority newly
diagnosed with metastatic cancer*. We observed that the ecDNA count
per tumor was significantly higher in untreated HMF tumors compared
tothe primary cancer cohort (0.34, 95% confidence interval (Cl): 0.30,
0.39 versus 0.4, 95% Cl: 0.33, 0.47, P= 0.045, Mann-Whitney U test;
Fig.2b and Extended DataFig. 5b). Next, we compared untreated HMF
cancersto HMF tumors that had been exposed to anticancer treatment
before the tumor biopsy collection. Pretreated HMF tumors showed
a further significant increase (0.57, 95% Cl: 0.50, 0.63, P=3.8 x107;
Fig. 2b). A resampling analysis in which the number of samples per

tumor type was equal between primary cancer cohort, untreated
advanced cancer and treated advanced cancer cohort sets demon-
strated that the ecDNA frequency increase following therapy exposure
isindependent of tumor type (Extended Data Fig. 5¢). Grouping of
HMEF patients by the number of pretreatments demonstrated that the
ecDNA frequency increase correlated with the number of therapies
received (Fig. 2c and Extended Data Fig. 6a). We repeated this analysis
in two tumor types with at least 20 samples per pretreatment group
and observed the same trend in colorectal cancer, but not in breast
cancer (Extended DataFig. 6b). Further grouping of previously treated
HMF patients by treatment class showed that chemotherapy demon-
strates the strongest association with ecDNA frequency (Fig. 2d and
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Fig.3|Longitudinal amplicon analysis. a, Sankey plot showing amplicon
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similarity were included (n = 91). Colors reflect amplicon classification, and
numbers indicate the number of amplicons retained between two time points
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b, The fraction of ecDNA and ChrAmp amplicon pairs retained between the first
and the second tumor. Numbersin parentheses indicate the numbers of first
tumor amplicons also detected in the second tumor, over the number of all first
tumor amplicons. Pvalue was calculated using the chi-square test for tumors1
and 2. OR, oddsratio.

Extended Data Fig. 6¢). Tumors from patients treated with targeted
therapy contained fewer ecDNAs compared to untreated tumorsinthe
advanced cohort. Targeted therapies may specifically inhibit onco-
genes carried on ecDNAs, which has been related to ecDNA genome
reintegration as a mechanism of therapy resistance. We evaluated
whether pretreatment with a targeted inhibitor altered the ratio of
oncogene target-carrying ecDNAs to chromosomal amplifications
by comparingthe observed ratio to arandomly sampled background
distribution from comparable untreated cohorts. We found that the
actual ratio was significantly higher compared to the background
distribution, suggesting that treatment usinginhibitors of oncogenes
amplified on ecDNAs did not result in the formation of ChrAmps
(Extended Data Fig. 6d).

To investigate whether different types of chemotherapy showed
different associations with the number of ecDNAs, we categorized
chemotherapy mechanismsinto the following three types: antimetabo-
lite, DNA damage agent and tubulin inhibitor. HMF patients pretreated
with tubulin inhibitor had a higher ecDNA frequency (Extended Data
Fig. 6e). The trend observed in the ecDNA counts mirrored that of the
ChrAmp counts, which may indicate that antitubulin therapy results
in genomic instability that leads to the formation of new amplicons
(Extended Data Fig. 6e,f)**°, These observations implicate newly
acquired focal amplifications as a marker for therapy response and
suggest that specific anticancer therapies may act as drivers of ampli-
con formation.

ecDNAs are preferentially preserved over time
Among patients whose tumors have been sequenced as part of TCGA
and HMF, a subset (n =131) was enrolled multiple times, resulting in
WGS profiles from multiple time points™. The availability of longitu-
dinal datasets provides an opportunity for evaluation of the stability
and evolution of ecDNA structure. Time-separated whole-genome
tumor sequences were also available through the GLASS consortium
(n=100)""*%, We constructed a cohort of 153 patients with multiple
whole genomes passing quality filters (Extended Data Fig. 1d). The
dataset includes 70 glioblastomas and gliomas, 18 prostate cancers,
16 breast cancers and 49 matched samples from other tumor types.
In total, 343 amplicons were detected at the first time point (T1),
of which 55 amplicons were extrachromosomal. At time point 2 (T2),
258 amplicons were detected, including 61 ecDNAs. To determine how

oftenamplicons were maintained over time, we determined amplicon
similarity in a pair-wise fashion?. Anamplicon similarity metric ranging
from O to 1 was computed between two amplicons with overlapping
territory based on shared breakpoints and genomic content. Specifi-
cally, 30 0f 55(54.5%) ecDNA and 46 of 288 (16%) ChrAmp T1amplicons
were found to matcha T2 amplicon with a statistically significant simi-
larity score. In the majority, amplicons classified as either ecDNA or
ChrAmp maintained theamplicon classat T2, with 30 of 36 T1-ecDNA/
T2-ecDNA amplicons and 46 of 51 T1-ChrAmp/T2-ChrAmp amplicons
(Fig. 3a). Similarly, 82% of T1 samples classified as ecDNA/ChrAmp/
NoAmp were assigned to the same class at T2 (Extended Data Fig. 7a).
We evaluated the amplicon location and structure of five HMF-derived
T1-ecDNA amplicons that were initially classified as ChrAmp at T2.
Those ChrAmp amplicons were detected in tumors with tumor purity
>0.7 and mean tumor genome sequence coverage >93x, substantiating
that the amplicon classification was accurate. Genomic reintegration
of ecDNA elements has been observed in response to treatment?,
However, we did not detect sequence reads linking the T2-ChrAmp
amplicons outside their original location of the genome (Extended
Data Fig. 7b-f). We, therefore, suggest that the classification change
fromecDNA to ChrAmp is not the result of reintegration but of clonal
selection; thatis, the ecDNA clone is dominantin the T1tumor but has
been outcompeted by a clone driven by a ChrAmp ampliconin T2.

Atboth time points, the fraction of ecDNA amplicons with amatch-
ing ecDNA amplicon in the reciprocal tumor was significantly higher
compared to the fraction of matching ChrAmp amplicons, showing
that ecDNA amplifications are more likely to be retained over time
(Fig.3b). Amplicon pairs did not show significant differencesin ampli-
con complexity, amplicon copy number or amplicon size (Extended
DataFig.8a-c).

Next, we evaluated clustered mutation event frequency, as we
found higher rates of kataegis in ecDNAs from the advanced cancer
cohortcompared to the primary cancer cohort. Confirming our obser-
vations from the singleton cohorts, we found that the number of clus-
tered mutation events was significantly higherin ecDNA compared to
ChrAmp amplicons (Extended Data Fig. 8d). The fraction of amplicons
containing one or more clustered mutation events was significantly
higherin ecDNA as well as ChrAmp amplicons that were shared, com-
pared to amplicons that were private to one of the two time points.
This finding was true when counting clustered mutations at T1as well

Nature Genetics


http://www.nature.com/naturegenetics

Article

https://doi.org/10.1038/s41588-024-01949-7

a ecDNA
P<0.02

ChrAmp
P<2.0x10™

100%

75%

50%

% of amplicons in tumor 1 (T1)

25%

iZSQ)

0%

Shared Private Shared Private

Fraction of T1 amplicons containing
clustered mutation events

M Yes

[ No

Fig. 4| Clustered mutation events by amplicon category. a, The fraction
and the number of ecDNA and ChrAmp amplicons with overlapping clustered
mutation eventsin the T1tumor. Pvalues were computed using a binomial test
(two-sided) with the fraction in the private category as a null probability for
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ecDNA and ChrAmp, respectively. b, The fraction and number of ecDNA and
ChrAmp amplicons with overlapping clustered mutation events in the T2 tumor.
Pvalues were computed using abinomial test (two-sided) with the fractionin the
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asat T2 (Fig. 4a,b). Vice versa, Tl ecDNAs and T1 ChrAmps were more
likely to be preserved at T2when marked by a clustered mutation event
(Extended DataFig.9a,b). Further separating amplicons by oncogene
status suggested that these results are independent of whether an
oncogene is present on the amplicon, while the analysis was limited
by smaller numbers (Extended Data Fig. 9c,d).

Weevaluated the variant allele fractions of clustered and nonclus-
tered mutations on ecDNA and ChrAmp amplicons. Clustered muta-
tions showed significantly higher variant allele fractions compared
to nonclustered mutations at both T1and T2 (Fig. 5a). There was no
statistically significant difference in variant allele fraction between
clustered mutations detected in private compared to shared ecDNAs.
To complement this analysis and adjust for possible differences in
tumor purity and ploidy, we inferred mutation cancer cell fractions.
Mutations on shared ecDNAs showed significantly higher cancer cell
fractions compared to mutations on private ecDNAs (Fig. 5b). Both
shared and private T2 clustered mutation events were carried out at
significantly higher cancer cell fractions compared to nonclustered
mutations. Comparable patterns were observed among ChrAmp ampli-
cons (Extended Data Fig. 10). Combined, the differences observed
betweenvariantallele and cancer cell fraction levels of shared and pri-
vate ecDNAs and ChrAmps reflect that shared ecDNAs have undergone
selection over a longer period of time. In addition, the higher variant
allele and cancer cell fraction of clustered relative to nonclustered
mutations suggest that clustered mutations generally occurred earlier
inthe amplicon lifetime.

Discussion

Activation of oncogenes through genomic amplificationisacommon
eventin cancer. TCGA and other -omic profiling efforts have provided
acatalog of somatic alterations at diagnosis. Other initiatives, includ-
ing the HMF, GLASS and tracking cancer evolution through therapy
(TRACERX), are contributing to our understanding of how the molecu-
lar foundation of cancer diversifies over space and time?****. By com-
paring dataacross different cohorts using conservative quality filters,

we found that focal amplifications on ecDNA elements can be com-
monly detectedin cancer. As described inthe first half of this paper, the
fraction of cancers significantly increased in metastatic and/or previ-
ously treated tumors. The penetrance of chromosomal focal amplifica-
tions also increased with tumor progression. The genomic landscape of
cancer is under strongselection, and theincreased amplicon frequency
inadvanced cancers suggests that the new formation of focal amplifi-
cations provides specific benefits to tumors postdiagnosis. Inaccord-
ance with this observation, we observed an increase in the number
of ecDNAs and ChrAmps per tumor following anticancer treatment,
with the greatest gain associated with chemotherapy. Among different
types of chemotherapy, tubulininhibition via drugs such as paclitaxel
and docetaxel provided the largest contribution to the increase in
ecDNA and ChrAmps. This finding may warrant further investigation
to understand whether tubulin inhibition drives amplicon formation
and whether amplicon formation has arole in rendering tumor cells
resistant to tubulin inhibition.

Surveillance of genomic integrity surveillance becomes increas-
ingly error-prone as cancer progresses**¢, and the resulting genomic
instability may create opportunities for the genesis of ecDNA. In envi-
ronments where cancer cells compete for resources such as oxygen and
nutrients, orinresponse to the stressimposed by anticancer treatments
and during metastasis, focal amplifications and ecDNAs in particular
may provide opportunities for adaptation that afford cancer cells with
higher proliferation rates. As we observed that ecDNAs were retained
over time at higher rates compared to chromosomal amplicons, the
uneven segregation of ecDNAs™ likely contributes to their competi-
tive advantage during the Darwinian process. Future studies of treat-
mentresistance under controlled circumstancesin model systems are
neededto elucidate the mechanisms through which focal amplifications
enhance untargeted therapy responses. In the second half of our paper,
we presented evidence that a small subset of ecDNAs in our analysis
werereplaced by similar chromosomal amplicons atalater time point.
Reintegration of ecDNAs near chromosome ends has been shown to
occur following DNA damage™>*. However, for ecDNA reintegration to
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be detectable with sequencing, a single integration locus would have
tobe carried in asufficient number of cells to overcome the sensitivity
thresholds of sequencing, which would likely only occur if specific
reintegration events underwent positive selection. Thus, the switching
ofecDNA to ChrAmps that we observed is more likely toreflect the posi-
tive selection of pre-existing ChrAmps, rather than the reintegration
of the ecDNA molecule. This is substantiated by the finding that these
ChrAmps were detected at their original locationin the genome, rather
thannear genome ends”. However, the precise delineation of chromo-
somal and extrachromosomal amplification structuresin tumors where
multiple subclonesin parallel amplify the same genomiclocus remains
achallenge. Such amplicon heterogeneity may provide an orthogonal
explanation for observations of amplicon class switching.

Theshort-read sequencing technology used to characterize cancer
genomesinthe cohortsanalyzed here may pose limitations on the ability
todetectamplicons with high sensitivity and characterize their structure,
aswellasthesensitivity to detect ecDNAs that have reintegratedinto the
genome. We aimed to address these limitations by imposing quality
filters that accounted for tumor purity and genome coverage. However,
studies of substantial tumor cohorts analyzed through long-read or
optical mapping methods are needed to overcome these barriers. Such
approaches may also be able to detect ecDNA reintegration.

Jointly, our results provide further support for the potential of
developing therapeutic anticancer strategies targeting ecDNAs, imply-
ing that one effective strategy would be to combine blocking ecDNA
formation with limiting ecDNA maintenance.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butionsand competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/541588-024-01949-7.

References

1. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov.
12, 31-46 (2022).

2. Seyfried, T. N. & Huysentruyt, L. C. On the origin of cancer
metastasis. Crit. Rev. Oncog. 18, 43-73 (2013).

3. Nguyen, B. et al. Genomic characterization of metastatic patterns
from prospective clinical sequencing of 25,000 patients. Cell 185,
563-575 (2022).

4. Martinez-Jimenez, F. et al. Pan-cancer whole-genome comparison
of primary and metastatic solid tumours. Nature 618, 333-341
(2023).

5. Albertson, D. G. Gene amplification in cancer. Trends Genet. 22,
447-455 (2006).

6. Verhaak, R. G. W., Bafna, V. & Mischel, P. S. Extrachromosomal
oncogene amplification in tumour pathogenesis and evolution.
Nat. Rev. Cancer 19, 283-288 (2019).

7. Yi, E., Chamorro Gonzalez, R., Henssen, A. G. & Verhaak, R. G. W.
Extrachromosomal DNA amplifications in cancer. Nat. Rev. Genet.
23, 760-771(2022).

8. Kim, H. et al. Extrachromosomal DNA is associated with oncogene
amplification and poor outcome across multiple cancers. Nat.
Genet. 52, 891-897 (2020).

9. Vi, E. etal. Live-cell imaging shows uneven segregation of
extrachromosomal DNA elements and transcriptionally active
extrachromosomal DNA hubs in cancer. Cancer Discov. 12,
468-483 (2021).

10. Barker, P.E., Drwinga, H. L., Hittelman, W. N. & Maddox, A. M.
Double minutes replicate once during S phase of the cell cycle.
Exp. Cell Res. 130, 353-360 (1980).

11. deCarvalho, A. C. et al. Discordant inheritance of chromosomal
and extrachromosomal DNA elements contributes to dynamic
disease evolution in glioblastoma. Nat. Genet. 50, 708-717
(2018).

12. Zack, T.|. et al. Pan-cancer patterns of somatic copy number
alteration. Nat. Genet. 45, 1134-1140 (2013).

13.  Koche, R. P. et al. Extrachromosomal circular DNA drives oncogenic
genome remodeling in neuroblastoma. Nat. Genet. 52, 29-34 (2020).

14. Hung, K. L. et al. ecDNA hubs drive cooperative intermolecular
oncogene expression. Nature 600, 731-736 (2021).

15. Wu, S. et al. Circular ecDNA promotes accessible chromatin and
high oncogene expression. Nature 575, 699-703 (2019).

16. Shimizu, N., Itoh, N., Utiyama, H. & Wahl, G. M. Selective
entrapment of extrachromosomally amplified DNA by nuclear
budding and micronucleation during S phase. J. Cell Biol. 140,
1307-1320 (1998).

17.  Von Hoff, D. D. et al. Elimination of extrachromosomally amplified
MYC genes from human tumor cells reduces their tumorigenicity.
Proc. Natl Acad. Sci. USA 89, 8165-8169 (1992).

18. Morton, A. R. et al. Functional enhancers shape extrachromosomal
oncogene amplifications. Cell 179, 1330-1341 (2019).

Nature Genetics


http://www.nature.com/naturegenetics
https://doi.org/10.1038/s41588-024-01949-7

Article

https://doi.org/10.1038/s41588-024-01949-7

19. Helmsauer, K. et al. Enhancer hijacking determines
extrachromosomal circular MYCN amplicon architecture in
neuroblastoma. Nat. Commun. 1, 5823 (2020).

20. Priestley, P. et al. Pan-cancer whole-genome analyses of
metastatic solid tumours. Nature 575, 210-216 (2019).

21. Barthel, F. P. et al. Longitudinal molecular trajectories of diffuse
glioma in adults. Nature 576, 112-120 (2019).

22. Deshpande, V. et al. Exploring the landscape of focal
amplifications in cancer using AmpliconArchitect. Nat. Commun.
10, 392 (2019).

23. Luebeck, J. et al. Extrachromosomal DNA in the cancerous
transformation of Barrett’s oesophagus. Nature 616, 798-805
(2023).

24. Bergstrom, E. N. et al. Mapping clustered mutations in cancer
reveals APOBEC3 mutagenesis of ecDNA. Nature 602, 510-517
(2022).

25. Hadi, K. et al. Distinct classes of complex structural variation
uncovered across thousands of cancer genome graphs. Cell 183,
197-210 (2020).

26. Roberts, S. A. et al. Clustered mutations in yeast and in human

cancers can arise from damaged long single-strand DNA regions.

Mol. Cell 46, 424-435 (2012).

27. Pich, O. et al. The mutational footprints of cancer therapies. Nat.
Genet. 51,1732-1740 (2019).

28. Nathanson, D. A. et al. Targeted therapy resistance mediated by
dynamic regulation of extrachromosomal mutant EGFR DNA.
Science 343, 72-76 (2014).

29. Scribano, C. M. et al. Chromosomal instability sensitizes patient
breast tumors to multipolar divisions induced by paclitaxel. Sci.
Transl. Med. 13, eabd4811 (2021).

30. Crasta, K. et al. DNA breaks and chromosome pulverization from
errors in mitosis. Nature 482, 53-58 (2012).

31. Vande Haar, J. et al. Limited evolution of the actionable

metastatic cancer genome under therapeutic pressure. Nat. Med.

27,1553-1563 (2021).

32. Varn, F. S. et al. Glioma progression is shaped by genetic evolution
and microenvironment interactions. Cell 185, 2184-2199 (2022).

33. GLASS Consortium Glioma through the looking GLASS: molecular
evolution of diffuse gliomas and the Glioma Longitudinal Analysis
consortium. Neuro Oncol 20, 873-884 (2018).

34. Jamal-Hanjani, M. et al. Tracking the evolution of non-small-cell
lung cancer. N. Engl. J. Med. 376, 2109-2121 (2017).

35. Fitzgerald, D. M., Hastings, P. J. & Rosenberg, S. M. Stress-induced
mutagenesis: implications in cancer and drug resistance. Annu.
Rev. Cancer Biol. 1, 119-140 (2017).

36. Tubbs, A. & Nussenzweig, A. Endogenous DNA damage as a
source of genomic instability in cancer. Cell 168, 644-656 (2017).

37. Shoshani, O. et al. Chromothripsis drives the evolution of gene
amplification in cancer. Nature 591, 137-141 (2021).

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if you modified the licensed
material. You do not have permission under this licence to share
adapted material derived from this article or parts of it. The images

or other third party material in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit

line to the material. If material is not included in the article’s Creative
Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2024

'Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon-si, South Korea. *Department of Biohealth
Regulatory Science, School of Pharmacy, Sungkyunkwan University, Suwon-si, South Korea. *Epigenome Dynamics Control Research Center,

Sungkyunkwan University, Suwon-si, South Korea. “Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA. ®*Jackson Laboratory

for Genomic Medicine, Farmington, CT, USA. ®NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health,
Luxembourg, Luxembourg. 'Department of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon-si, South Korea. School of
Biological Sciences, University of California at San Diego, La Jolla, CA, USA. *Department of Life Sciences and Medicine, Faculty of Science, Technology
and Medicine (FSTM), University of Luxembourg, Belvaux, Luxembourg. °Department of Neurosurgery, Cancer Research Institute and Ischemic/
Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, South Korea. "Advanced Institutes of Convergence Technology, Seoul
National University, Suwon-si, South Korea. ?Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, USA.
Halicioglu Data Science Institute, University of California at San Diego, La Jolla, CA, USA. “Department of Neurosurgery, Amsterdam University Medical
Centers/VUmc, Amsterdam, the Netherlands. ®These authors contributed equally: Hoon Kim, Soyeon Kim. ®These authors jointly supervised this work:
Hoon Kim, G. W. Verhaak. [</e-mail: wisekh@skku.edu; roel.verhaak@yale.edu

Nature Genetics


http://www.nature.com/naturegenetics
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wisekh@skku.edu
mailto:roel.verhaak@yale.edu

Article

https://doi.org/10.1038/s41588-024-01949-7

Methods

Ethical approval

Thisstudy reanalyzes datagenerated from previously published studies
(TCGA, ICGC, HMF and GLASS) that complied with ethical regulations.

Patient cohort

The HMF cohort consists of metastatic tumor samples obtained after
local or systemic treatment and as part of the CPCT-02 (NCT01855477)
and DRUP (NCT02925234) clinical trials. Patients treated for a wide
range of tumor-type diagnoses at various hospitals across the Neth-
erlands were enrolled in the trials. Biopsy specimens were sequenced
at the core facilities of the HMF. WGS was performed for each sam-
ple according to standardized protocols. Detailed information on
sequence platforms, capture kits and read length has been outlined
in the HMF marker paper?. Data access approval was granted to H.K.
as well as R.G.W.V. WGS CRAM files and PURity & Ploidy Estimator
(PURPLE®)-inferred copy-number segment files were accessible
through a Google Cloud Platform. Mutation VCF files and associated
metadata were downloaded from the HMF Database (https://database.
hartwigmedicalfoundation.nl). In total, the HMF database included
WGS data from 4,513 tumor biopsies (after excluding patients with
insufficientinformed consent).

WGS datasets from the GLASS consortium were collected and pre-
processed as previously reported”*2. Mutation VCF files and associated
metadata were downloaded from www.synapse.org/glass.

WGS datasets from TCGA were accessed through the Institute for
Systems Biology Cancer Genomics Cloud (ISB-CGC; https://isb-cgc.
appspot.com/), which provides a cloud-based platform for TCGA
dataanalysis. The processed (hgl9) and clinical data were available at
the Genomic Data Commons (https://portal.gdc.cancer.gov) and the
PancanAtlas publications page (https://gdc.cancer.gov/about-data/
publications/pancanatlas).

WGS datasets from ICGC were processed on the Amazon Web
Services Cloud. The associated metadata were obtained from the ICGC
data portal at https://dcc.icgc.org/.

Longitudinal sample pairs of glioma and glioblastoma tumors were
also collected from the Centre Hospitalier de Luxembourg (CHL, Neu-
rosurgical Department) from patients who had given their informed
consent. The study received official approval from the National Com-
mittee for Ethics in Research (CNER) Luxembourg, under protocol
201201/06. Additional longitudinal sample pairs of glioma and glio-
blastomatumors were collected from the Department of Neurosurgery,
Seoul National University Hospital. It was approved by the Institu-
tional Review Board of Seoul National University Hospital (approval
H-2004-049-1116), and all patients provided signed informed consent
accordingly.

Collecting tumor stage information

We collected tumor stage information for TCGA (Genomic Data Com-
mons PanCancer portal: https://gdc.cancer.gov/about-data/publica-
tions/pancanatlas), Pan-Cancer Analysis of Whole Genomes (PCAWG;
ICGC portal: http://dcc.icgc.org/releases/PCAWG/) and HMF*. For
our analysis, we simplified the original complex tumor stages into
stages 1, 2, 3 and 4 by assigning stage 1to those originally annotated
as1(A/B),1(A/B) and TINOMO; stage 2 to 2 (A/B), Il (A/B), TONIMO,
TINIMO, T2NOMO, T2NIMO and T3NOMO; stage 3 to 3 (A/B/C),
111 (A/B/C), TON2MO, TIN2MO, T2N2MO, T3NIMO, T3N2MO, T4(Any N)
MO and (Any T)N3MO; stage 4 to 4, IV, (Any T)(Any N)M1, (Any T)(Any
N)M2 and (Any T)(Any N)M3. Nonstage four samples with incomplete
TNM stage (including ‘X’) annotation were excluded, and all patients
from the HMF cohort were considered as stage IV cancer.

AmpliconArchitect
AmpliconArchitect (part of AmpliconSuite-pipeline, v.0.1344.2) was
run using default settings. This includes BAM file downsampling to

10x coverage before detection of seed regions, to normalize sequenc-
ing depth between samples. In a mixed cancer-type WGS cohort of
133 samples, running AmpliconArchitect with or without downsam-
pling did not significantly alter the number of ecDNAs detected.
AmpliconArchitect was run using the maximum wall time setto 72 h
per sample in Google Cloud and 2 weeks in Amazon Cloud (https://
github.com/AmpliconSuite/AmpliconSuite-pipeline). Candidate
seed regions for inputs to AmpliconArchitect were identified with
AmpliconSuite-pipeline.py, which uses CNVkit*® for detecting DNA
copy-number alterations and were defined as at least 50 kb in length
and a minimum of 4.5 copy numbers. Reconstruction of amplicon
structures is based on the full and not a downsampled BAM and not
affected by downsampling. We evaluated seed region count and did
not observe significant associations between seed region count and
tumor coverage or tumor purity bins. A higher number of seed regions
positively correlated with the number of ecDNAs detected and showed
similar trendsinboth primary and advanced cancer cohorts. We further
examined the association between the number of ecDNA amplicons
detected and the number of candidate seed regions, as well as the size of
seed regions. We observed comparable degrees of positive correlation
between primary and advanced cohorts; that is, the number of seeding
regionsisrelated tothe number of ecDNA detected, but they do not dis-
proportionately affect ecDNA frequency in the primary and advanced
cohorts. For analysis of longitudinally paired samples, the candidate
seed regions identified from different tumors in the same patient
were merged into an identical set of candidate seed regions for those
tumors in the patient. AmpliconClassifier (v0.4.11) was invoked from
AmpliconSuite-pipeline to predict the class of focal amplification and
refine gene coordinates involved in the specific focal amplifications.

Amplicon complexity

Amplicon complexity was calculated using AmpliconClassifier Ampli-
con complexity scores, as previously reported in ref. 23. Scores were
computed for each focal amplification using the AmpliconArchitect
cyclesfile, which encodes pathsidentified by AmpliconArchitectinthe
copy-number-aware AmpliconArchitect breakpoint graph explaining
the observed changesin copy number. The complexity score takes the
distribution of copy-number flow values assigned to each genome path
of a specific focal amplification type and computes a vector, which
represents the fraction of the total copy number captured by each
path, weighted by the length of the path. The score alsoincorporatesa
residual, which measures the weighted copy-number fraction after the
first 80% explained, if any is still remaining (for example, no residual
would remainif one genome path could explain all the copy numbers).
The amplicon complexity score function then combines the entropies
oftheresidual, nonresidual and the total number of genome segments
inthe focal amplification, with a high score indicating anamplicon with
amore complex structure than an amplicon with alowscore.

Amplicon similarity

Amplicon similarity score was computed to quantify the similarity
between genomically overlapping amplicons from T1and T2 tumors
from identical patients, implemented with amplicon_similarity.py
script, available in AmpliconClassifier (v.0.4.11, part of the Amplicon-
Suite, v.0.1344.2)%. Following the identification of T1I-T2amplicon pairs
with overlapping genomic regions, an amplicon similarity score was
calculated using shared breakpoints and shared genomic content. The
similarity score was compared against similarity scores from unrelated
overlapping amplicon distributions to compute a Pvalue for the simi-
larity score. Amplicon pairs with P values < 0.05 were included in our
analysis as shared events.

Detection of clustered mutations
SigProfilerSimulator (v.1.1.4)* was first applied to quality-filtered,
single-nucleotide variant-only VCF filesto determine theintramutational
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distance cutoff for each sample to only detect mutation clusters that
were not likely to occur by chance. Eachsample was simulated 100 times
inthe pentanucleotide context (the +2 bp sequence context) while main-
taining the same mutational burden per chromosome and preserving
the transcriptional strand bias. SigProfilerClusters (v.1.0.11)*° was then
used tosubclassify clustered mutations while performing agenome-wide
mutational density correction. A window size of 1 Mb was used for cor-
recting intramutational distances based on mutational density, and
mutation variant allele frequencies were considered when subclas-
sifying clustered mutations. From SigProfilerClusters output, kataegis
mutations having anidentical group number were considered asasingle
clusteredevent.Each clustered event was defined as ecDNA-overlapping
kataegis if overlapped with ecDNA regions and ChrAmp-overlapping
kataegis if overlapped with ChrAmp regions. Only the samples having
the available mutation files for which the clustered mutation calling
was successful were included in this analysis (single time point anal-
ysis—2,454 (58 failed, 97 no mutation file) of 2,609 PCAWG samples
and 4,136 (34 failed) of 4,170 HMF samples; multitime point analysis
—248 (2failed) of 250 HMF samples and 181 (1 failed, 18 no mutation file)
0of 200 GLASS samples). HMF mutation files in the form of VCF were
provided by the HMF, TCGA-ICGC mutation files were obtained from
https://dcc.icgc.org/inthe form of MAF and GLASS mutation files were
from www.synapse.org/glass.

Determining the number of pretreatments

Eachentry of prebiopsy drugs annotation provided by the HMF consists
ofapatientidentifier, treatment start date, end date, name of the drug,
type of the drugand the drug mechanism. After filtering out drug treat-
mententries that occurred before the sample biopsy date, the number
of unique entries for a patient was defined as the number of pretreat-
mentsthe patient had received. The treatment annotation provided by
the HMF included a drug classificationinto broad categories including
chemotherapy, hormonal therapy and targeted therapy. We further
subdivided chemotherapy drug treatments into the following four
categories: (1) antmetabolite, (2) DNA damage, (3) tubulin inhibitor
and (4) other, based on the literature review. A detailed classification
of drugs by mechanism of action and associated referencesis provided
in Supplementary Table 2.

Estimating cancer cell fractions of mutations

The cancer cell fractions of single-nucleotide variant mutations for
HMF and GLASS multitime point samples whose mutation, copy
number and tumor purity are available were computed by PyClone-VI
(v.0.1.2) with default parameters. Mutations on sex chromosomes were
excluded. Mutation, copy number and purity files for HMF samples
were provided by the HMF, and the files for GLASS samples were from
www.synapse.org/glass.

Statistical analysis
All data analyses were conducted in R (v.4.1.2) and Python (v.3.9.13).
Statistical tests were not adjusted for multiple comparisons.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

WGS from TCGA were accessed through the database of Genotypes and
Phenotypes (https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page=login)
under accessionID phs000178.v11.p8 (TCGA). WGS data from PCAWG/
ICGC were downloaded from the ICGC at https://dcc.icgc.org/ (Data
Access Compliance Office application DACO-753). The WGS and asso-
ciated clinical data used in this study were made available by the HMF
and were accessed under a license agreement (HMF DR-057 v.3.0).
Data access can be obtained by completing a data request form.

The form and detailed application procedures can be found at https://
www.hartwigmedicalfoundation.nl/applying-for-data/. Processed
sequencing datafromthe GLASS project used in this study are available
onSynapse at https://www.synapse.org/glass. AmpliconSuite output
files for TCGA are available at https://ampliconrepository.org/project/
655bda68bba7c92509522479. AmpliconSuite output files for PCAWG
areavailable at https://ampliconrepository.org/project/655c060abb
a7¢925095555da. AmpliconSuite output files for GLASS are available
at https://ampliconrepository.org.

Code availability
The code used for analysis has been deposited at https://github.com/
hoonbiolab/panecmanuscript2024.
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Extended Data Fig. 1| Overview of sample selection criteria. a, Comparison
of extrachromosomal DNA (ecDNA) count by cohort and average sequence
coverage. P-values are derived from a two-sided Mann-Whitney U test. Tissues
arematched across the Cancer Genome Atlas (TCGA), the Pan-Cancer Analysis
of Whole Genomes (PCAWG) and the Hartwig Medical Foundation (HMF; at least
20 samplesin each cohort). Numbers on the bar indicate the number of samples.
Boxplots represent minimum (Oth percentile), maximum (100th percentile),

1st and 3rd quartiles and median with outliers not shown. b, Comparison of ecDNA
count by cohortand tumor purity bin for samples whose coverage is higher or
equal to 10x. P-values are derived from a two-sided Mann-Whitney U test. TCGA
includes all samples above the coverage cutoff. Tissues were only matched

between PCAWG and HMF (at least 20 samples in both) because the TCGA
sample size after coverage filtering was too small. Numbers on the bar indicate
the sample number. Boxplots represent minimum (Oth percentile), maximum
(100th percentile), 1st and 3rd quartiles and median with outliers not shown.

¢, Cohort and sample selection overview for single time point analysis. d, Cohort
and sample selection overview for multitime point analysis. Abbreviations are
defined as follows: AA, AmpliconArchitect tool; ICGC, International Cancer
Genome Consortium; AML, acute myeloid leukemia; SKCM, skin cutaneous
melanoma; T1, first time point tumor; T2, second time point tumor; GLASS,

the Glioma Longitudinal Analysis Consortium.

Nature Genetics


http://www.nature.com/naturegenetics

Article https://doi.org/10.1038/s41588-024-01949-7

a e
Primary Cancer Advanced Cancer Sample %
S N B T
16.3% B2% (n=49)
1)% 27.9% -(n=68) GBM
NoAmp NoAmp o
62.1% 46.4% 14@./:27;_ 202%  WN208%M (1=24) & oo
(N=1287) (N=1470) 5 7L</ S 305%  N21:9%M (n=105)
4"%_ 250%  INSASEIN (n=108)s,
BT 466% IN2BT%M (n=131)

49).
1’52}7— 056 W (1-84) ¢anc
. 185% 67.7% WIS8%! (n=189)

ecDNA : tumors in which 2 1 ecDNA amplicon was detected
ChrAmp: tumors with no ecDNA amplicon and 2 1 ChrAmp amplicon

NoAmp: tumors in which no amplicon was detected A
7, IS 255% W00 (n=41) e
b — Primary — Advanced I 178% 55.6% N26I7%0 (n=45)
4%.
ecDNA ChrAmp NoAmp
[%0% . =
‘%% A6 WA (1=50) |cpo
92% 58%  WEN2S%I (n=26)
A

%, 9 755% IN152% (n=151)
<%%%-/o 833% 1010% (n=30) PAEN

=0.774 D=1 =
rimary=23.0% Primary=53.2% | | ’%Q} £
(95%Cl1:22.9~23.0) (95%Cl:53.1~53.2) %1 ST 19.0% WINNN208%N (n=58) pgop g
Advanced=25.2% Advanced=45.30% | 184%  98%N (n=87) =
(95%Cl:25.1~25.2) (95%C1:45.3~45.4) g%} g
: %% 356%  IN2T8%MM (n=180) 2
1 4%%_ 24%  WNEBAI (n=506) < &
20% 30% 40% 50% 20% 30% 40% 50% 20% 30% 40% 50% A,
c Sample % from lineage-matched 1000 re-sampling ”%’_ 300% W22 (n=41) sTAD
s’cg,:_ 200% INS60%M (n=25)
Lineage .
ChrAmp Samples [ Primary Cancer % — Advanced Cancer % ] %/’Q}— 405% DSBS (n-42)
A St %, IR %% ISTITE (n=222)"UAD
@M Significant Increase
8% — 7% v Significant decrease — 18% (n=113)
D70 R n=
%.8% L ®B0% (n=326)PRAD
SARC *#*
2%~ 14% 60.6% WINZIS%IN (1=69) oADREAD
* 58.3% 2760 (n=456)
452% NSTAZIN (n=115)
82% A
o <Y
% 2% 688% MBI (1=266) .
UCEC 162% 1 51.4% INE24%M (n=37)
ki 24% —21% 4,
o — o A
28 11.0% B0% 10% (v=99) e
70% 87.3% 56% (n=71)

d

Sample classification

N B ecDNA
ChrAmp count [ S ] " KoAm®

Primary Cancer count — Advanced Cancer count

A Significant Increase
8521'\4!; 279 V Significant decrease

SARCWY ***
1.369!0.75/
KIRCA\ *
030 — 0.

— 0.155
PACA
226 —1.179

Extended Data Fig. 2| See next page for caption.
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Extended Data Fig. 2| Additional data to sample and amplicon classification.
a, Overview of sample classification for the 2,071 primary and 3,170 advanced
patients whose tumor sequencings are above purity and coverage cutoff,
including all tumor types. Numbers in parentheses indicate number of tumor
samples. b, Resampling analysis with replacement was repeated 1,000 times
while maintaining sample count per tumor-type identical between primary
cancer and advanced cancer cohorts in each resampled dataset to compare
classification distributions shows a significant increase in the number of samples
classified asecDNA and ChrAmp, respectively, in the advanced cancer cohort,
independent of tumor-type distribution. Empirical cumulative distributions
(ECDF) of sample classification percentage using 1,000 re-sampled datasets.

D represents Kolmogorov-Smirnov statistic. ¢,d, Percentage of ChrAmp samples

(c) and the average number of distinct ChrAmp amplicons per sample (d) in
primary and advanced cancer cohorts, showing tumor lineage represented by
atleast 20 tumors in both cohorts. P-values were computed using a one-sided
binomial test with the ChrAmp-carrying tumor fraction in the primary cancer
cohort as a null probability in c and using a one-sided Mann-Whitney U testin d.
Notsignificant unless noted otherwise. Asterisks indicate level of significance:
*1.00e-02 < p <£5.00e-02; **1.00e-03 < p <1.00e-02; ***1.00e-04 < p < 1.00e-03;
****p <1.00e-04. e, Distribution of primary and advanced sample classification
stratified by tumor lineages each of which includes at least 20 tumors. Numbers
in parentheses indicate the number of ecDNA samples and the total number of
samples of that lineage.
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Extended Data Fig. 5| See next page for caption.
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Extended Data Fig. 5| Additional data to clinical associations. a, Multivariate
Cox proportional hazards model, incorporating primary tumor locations, sex,
age, whole-genome doubling status, microsatellite instability (MSI) status,
homologous recombination (HR) status and tumor stage in primary and
advanced cancer cohorts, showing that extrachromosomal DNA amplification
resulted in the highest hazard ratio. The error bars represent the 95% confidence
intervals of the hazard ratios. Asterisks indicate level of significance: *1.00 x
102<p<5.00x10%*1.00x102<p<1.00x10%**1.00x10* <p<1.00x 107,
b, Distribution of primary, advanced untreated and advanced treated cohorts
intoecDNA/ChrAmp/NoAmp categories. All tumors with available pretreatment
information were included in the analysis. Y-axis represents category fractions.

Numbers indicate patient counts. P-values were computed using a two-sided
binomial test with the ecDNA-carrying tumor fraction in the primary cancer
cohortasa null probability when comparing primary vs advanced untreated/
treated and that in the advanced untreated cohort as a null probability when
comparing advanced untreated vs advanced treated. ¢, Resampling analysis
with replacement was repeated 1,000 times while maintaining sample count
per tumor-type identical between primary cancer and advanced cancer
untreated and advanced cancer treated cohorts, in each resampled dataset,
to compare classification distributions. Empirical cumulative distributions of
sample classification percentage using 1,000 re-sampled datasets. D represents
Kolmogorov-Smirnov statistic (two-sided).
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Extended Data Fig. 6 | See next page for caption.
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Extended DataFig. 6 | Effects of pretreatments on distributions of sample
and amplicon classifications. a, Distribution of ecDNA/ChrAmp/NoAmp
tumors across the number of pretreatment a patient received. Numbersin
parentheses indicate tumors with ecDNA/all tumors. P value was calculated using
atwo-sided Mann-Kendall trend test. b, Distribution of the number of distinct
ecDNA amplicons pretreatment count (advanced cancers only). P value was
calculated using a two-sided Mann-Kendall trend test. Points represent mean
values and error bars show a 95% confidence interval. Only patients with available
clinicalinformation were included. Numbers indicate the number of patients.

¢, Distribution of ecDNA/ChrAmp/NoAmp tumors by consolidated pretreatment
categories. Numbersin parentheses indicate tumors with ecDNA/all tumors.

Only treatment types >50 patients are shown. P values were calculated using a
two-sided binomial with the ecDNA-carrying tumor category in the untreated
group as a null probability. d, Odds of tumors treated with targeted inhibitors to
contain target oncogene on an ecDNA compared to tumors treated with targeted
inhibitors lacking the amplified target, when compared to the background

distribution calculated with the untreated primary tumors. e, ECDNA or ChrAmp
amplicons by pretreatment mechanisms. Only treatments used in >10 patients
wereincluded. Samples were categorized solely based on whether they received
chemotherapy of a specific mechanism, without considering other treatments
including radiation. The points on the graph represent the mean, and the

error bars indicate the standard error of the mean. The numbers shown at the
bottom of the figure are sample sizes. P-values were calculated with two-sided
Mann-Whitney U test. f, Sample classification (¢ecDNA, ChrAmp, NoAmp) in the
advanced cohort by different pretreatment chemotherapy mechanisms. Only
treatments used in 210 patients were included. Samples were categorized solely
based on whether they received chemotherapy of a specific mechanism, without
considering other treatments including radiation. As a result, the samples might
have received multiple types of treatments. The p-value was calculated using a
two-sided binomial test, with untreated samples serving as the reference for each
chemotherapy mechanism. n.s., not significant.
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Extended Data Fig. 7 | Longitudinal analysis of sample classification. ecDNA at tumor 1(T1), and ChrAmp at tumor 2 (T2). Allamplicon pairs showed a
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Extended Data Fig. 8 | Genomic characteristics of longitudinally retained
amplicons. a-c, Complexity (a), DNA copy number (b) and amplicon size

(c). P-values were computed using a two-sided Wilcoxon paired test. T1and

T2 represent a patient’s first time point tumor and second-time point tumor,
respectively. Boxplots represent minimum (Oth percentile), maximum (100th
percentile), 1st and 3rd quartiles and median. n.s., not significant. d, The number

ofkataegis eventsis significantly higher in ecDNA amplicons compared to
ChrAmp amplicons, at both time points. Numbers in parentheses indicate
numbers of ecDNA or ChrAmp amplicons. Error bars represent the standard
error (95% confidence interval) of the mean. P values were calculated using a
two-sided Mann-Whitney U test.
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Extended Data Fig. 9 | Additional data to longitudinal amplicon analysis.
a, The fraction of ecDNA and ChrAmp amplicons with overlapping clustered
mutations in the 1st tumor. Clustered mutations were further classified into
‘shared clustered mutations’ when two or more mutations in the clustered
mutation event were retained in the 2nd tumor, ‘private clustered mutations’
when the clustered mutation event was detected in the 2nd tumor, and ‘no
clustered mutations’ when no T1 clustered mutations were recovered in the T2
amplicon. b, The fraction of ecDNA and ChrAmp amplicons with overlapping
clustered mutationsin the 2nd tumor. Clustered mutations were further
classified into ‘shared clustered mutations’ when two or more mutationsin
the clustered mutation event were retained in the 1st tumor, ‘private clustered

mutations’ when the clustered mutation event was detected in the 1st tumor and
‘no clustered mutations’ when no T2 clustered mutations were recovered in the
Tlamplicon.For aandb, statistical significance was assessed with chi-squared
test for retained vs all others. ¢, The fraction of ecDNA and ChrAmp amplicons
with overlapping clustered mutations in the Ist tumor. Numbers in parentheses
indicate numbers of 1st tumor amplicon overlapping clustered mutations.d, The
fraction of ecDNA and ChrAmp amplicons with overlapping clustered mutations
inthe 2nd tumor. Numbers in parentheses indicate numbers of 2nd tumor
amplicon overlapping clustered mutations. P-values were computed using a
chi-square test. n.s., not significant.
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Extended Data Fig.10 | Additional data to variant allele fraction by
mutational category. a,b, Comparison of (a) variant allele fractions and
(b) cancer cell fractions (of different mutational categories detected on

mutation VAFs
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After filtering patients (see Extended Data Figure 1.C), we selected 7860 patients (3690 TCGA-ICGC, 4170 HMF) each of which consisted of a
single tumor and its patient-matching normal sample. The results in our manuscript are derived from statistical tests that take sample sizes
into account when determining significance, negating the need for an a priori sample size determination. No statistical methods were used to
predetermine sample size.

Data exclusions  All available whole genome sequencing data from HMF, TCGA-ICGC and GLASS were analyzed. No samples were excluded a priori.

Replication Independent analyses resulted in repeated results, verifying the reproducibility of our findings.

Randomization  Samples from TCGA-ICGC, HMF, and GLASS cohorts were independently collected by their data collection centers. When comparing primary
vs advanced tumors, we ensured that both groups had a sufficient number of tumors per tumor type in order to account for potential

disproportinate samples distribution over different tumor types.

Blinding The samples we analyzed were deidentified by HMF, TCGA-ICGC and GLASS
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Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies g |:| ChiIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Clinical data

Dual use research of concern
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Plants

Plants

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor
was applied.

Authentication Describe-any-atithentication-procedtres foreach seed stock-tised-ornovel- genotype generated—Describe-anyexperiments-used-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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