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Origins and impact of extrachromosomal 
DNA

Chris Bailey1,20, Oriol Pich1,20, Kerstin Thol2,3, Thomas B. K. Watkins4,5, Jens Luebeck6, 
Andrew Rowan1, Georgia Stavrou2,7, Natasha E. Weiser4,8, Bhargavi Dameracharla4, 
Robert Bentham2,3, Wei-Ting Lu1, Jeanette Kittel2,7, S. Y. Cindy Yang9, Brooke E. Howitt4, 
Natasha Sharma2, Maria Litovchenko2,3, Roberto Salgado10,11, King L. Hung8,  
Alex J. Cornish12, David A. Moore1,2,13, Richard S. Houlston12, Vineet Bafna6,  
Howard Y. Chang8, Serena Nik-Zainal14, Nnennaya Kanu2, Nicholas McGranahan2,3,  
Genomics England Consortium*, Adrienne M. Flanagan15,16, Paul S. Mischel4,5 ✉, 
Mariam Jamal-Hanjani2,7,17 ✉ & Charles Swanton1,2,17 ✉

Extrachromosomal DNA (ecDNA) is a major contributor to treatment resistance and 
poor outcome for patients with cancer1,2. Here we examine the diversity of ecDNA 
elements across cancer, revealing the associated tissue, genetic and mutational 
contexts. By analysing data from 14,778 patients with 39 tumour types from the 
100,000 Genomes Project, we demonstrate that 17.1% of tumour samples contain 
ecDNA. We reveal a pattern highly indicative of tissue-context-based selection for 
ecDNAs, linking their genomic content to their tissue of origin. We show that not only 
is ecDNA a mechanism for amplification of driver oncogenes, but it also a mechanism 
that frequently amplifies immunomodulatory and inflammatory genes, such as those 
that modulate lymphocyte-mediated immunity and immune effector processes. 
Moreover, ecDNAs carrying immunomodulatory genes are associated with reduced 
tumour T cell infiltration. We identify ecDNAs bearing only enhancers, promoters  
and lncRNA elements, suggesting the combinatorial power of interactions between 
ecDNAs in trans. We also identify intrinsic and environmental mutational processes 
linked to ecDNA, including those linked to its formation, such as tobacco exposure, 
and progression, such as homologous recombination repair deficiency. Clinically, 
ecDNA detection was associated with tumour stage, more prevalent after targeted 
therapy and cytotoxic treatments, and associated with metastases and shorter overall 
survival. These results shed light on why ecDNA is a substantial clinical problem that 
can cooperatively drive tumour growth signals, alter transcriptional landscapes and 
suppress the immune system.

ecDNA is a common origin for amplified oncogenes across human 
cancer1,2. Individual ecDNAs are large (typically greater than 500 kilo-
bases (kb) in size), mobile, gene-containing (and regulatory-region- 
containing) circular DNA particles that can be found in the nuclei of 
many cancer cells3,4. The non-chromosomal inheritance and resultant 
random segregation of ecDNA during cell division3,5 promotes high 
oncogene copy number and intratumoural genetic heterogeneity, 
facilitating rapid genome change to drive treatment resistance6,7. 
Highly accessible chromatin of ecDNA, and altered gene-regulatory 

architecture resulting from its circular structure, as well as the pro-
pensity to form hubs that promote intermolecular cooperation, 
generates high-level oncogenic transcription, contributing to tumori-
genesis8,9. ecDNAs can arise early during tumorigenesis, such as in the 
transformation from Barrett’s high-grade dysplasia to oesophageal 
adenocarcinoma and have also been detected later in the course 
of disease progression4,10,11. As ecDNAs drive treatment resistance 
through rapid genome alterations that may consequently accelerate 
disease progression6,7, it is important to distinguish ecDNA from other 
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types of focal amplification. The ability to computationally decipher 
whether an amplified gene has arisen from ecDNA, and to deconvolute 
its structure and sequence12, facilitates the examination of ecDNA 
content across human cancer. The clinically annotated whole-genome 
sequencing Genomics England (GEL) 100,000 Genomes Project 
(100kGP) provides an opportunity to decipher the landscape of 
ecDNA in human cancer, and to shed light on the underlying molecu-
lar processes in which it develops, as well as gaining insight into its  
clinical impact.

The body map of ecDNA
We analysed 15,832 samples of whole-genome-sequenced cancers 
from 14,778 patients recruited across 13 UK National Health Service 
Genomic Medicine Centres as part of GEL 100kGP (GEL v12 data 
release)13. We used AmpliconArchitect followed by AmpliconClas-
sifier, computational tools that have been shown to identify ecDNA 
from whole-genome sequencing data4,10,12 (Fig. 1a and Extended Data 
Fig. 1a,b). These tools detect amplifications that arose as ecDNAs. To 
confirm our findings, we conducted fluorescence in situ hybridization 
(FISH) using MDM2, CDK4, PDGFRA and MYC oncogene probes on six 
dedifferentiated liposarcoma tissue samples, four osteosarcoma tissue 
samples and one angiosarcoma tissue sample in the GEL cohort that 
were available for further analysis (Fig. 1a and Extended Data Fig. 2).

We classified 39 solid and haematological tumour subtypes and 
quantified focal amplifications in 15,832 samples from 14,778 patients 
(Supplementary Table 1). Of the 14,778 patients with cancer in the study, 
1,800 were recorded as receiving hormonal (n = 27), immunotherapy 
(n = 57), targeted (n = 415) and/or cytotoxic chemotherapy (n = 1,653) 
treatment before biopsy. Staging information was available for 10,780 
(72.9%) patients, with 836 (5.7%) patients recorded as having stage 4 
disease (Extended Data Fig. 1c). Focal amplifications were defined 
as regions of the genome between 50 kb and 20 Mb in size, with a 
minimum copy number of 4.5 and twice the estimated ploidy of the 
tumour. Tumour purities ranged from 10% to 95% with a mean of 50.1% 
(Extended Data Fig. 3a). This large-scale analysis enabled us to develop 
a data-rich map of ecDNA frequency and contents across the human 
body (Fig. 1c), and resolve the mutational processes, genomic context 
and clinical implications of ecDNA across multiple cancers. A total 
of 4,716 unique ecDNAs were identified from 2,532 ecDNA-positive  
tumours.

ecDNA amplifications were detected in 17.1% of tumour samples, 
with widely varying frequencies by cancer type, copy number and size 
(Fig. 1c, Extended Data Fig. 3b–e and Supplementary Tables 2–4). ecDNA 
was detected in 54.9% of liposarcomas (n = 82, 95% confidence interval 
(CI) 44.7–65.8%), 49.1% of glioblastoma (n = 291, 95% CI 43.3–55.0%), 
46.4% of HER2+ breast cancer (HER2+ BRCA, n = 196, 95% CI 39.3–53.7%; 
examples of which we were able to identify through FISH in an inde-
pendent cohort; Extended Data Fig. 4), 37.9% of upper gastrointestinal 
adenocarcinomas and 22.4% of lung squamous cell carcinomas, 24.6% 
of bladder cancers and 20.4% of ovarian cancers, among others (Fig. 1d). 
Some tumour types had a very low prevalence of ecDNA, including  
oligodendrogliomas, in which ecDNA was not detected (n = 57). Further, 
the amplification of specific oncogenes varied greatly by tissue type 
(Supplementary Table 1). These results reveal a strong impact of tissue 
lineage on the frequency and content of ecDNAs.

In 36/37 tumour types where ecDNA was detected, focal amplifica-
tions had a higher estimated copy number when derived from ecDNA 
compared to chromosomal amplifications (Extended Data Fig. 5a). 
Most ecDNAs arose from a locus on one chromosome (89.9% n = 3,705). 
Some ecDNAs were composed from genes from different chromosomes 
and were mostly seen in sarcomas and breast cancers (Extended Data 
Fig. 5b,c). Of note, ecDNA derived from chromosomal translocations 
observed in breast cancer such as t(8;11), t(8;17) and t(11;17) might arise 
through the recently described translocation–bridge mechanism14. 

ecDNAs often contained more than a single oncogene on the same 
ecDNA (46%), primarily driven by their oncogene proximity on the 
native chromosome from which the ecDNA arose (Extended Data 
Fig. 6a,b). We also detected tumours with multiple ecDNA species 
present at different copy-number states bearing distinct oncogenes 
(Extended Data Fig. 6c–e).

Owing to its non-chromosomal inheritance5, ecDNA promotes intra-
tumoural genetic heterogeneity. In 578 patients, multiple regions from 
the same tumour were sampled, with ecDNA detected in 151 tumours 
(26.1%). Controlling for tumour type, the odds of detecting ecDNA were 
2.6 times greater when 2 regions of the same tumour were sampled 
(odds ratio (OR) 2.6, 95% CI 2.2–3.1; Extended Data Fig. 7a). Moreover, 
in more than 60% of tumours for which multiregion sequencing was 
carried out, ecDNA was detected in only a subset of regions (regional; 
Extended Data Fig. 7b).

Selection of ecDNA-associated oncogenes
Significant oncogene enrichment on ecDNA against a permuted 
background (proportion 0.031, P < 0.0001; Extended Data Fig. 7c and  
Methods) was detected, with a greater propensity to amplify oncogenes 
on ecDNA relative to focal chromosomal amplifications (Extended 
Data Fig. 7d) and a higher oncogene count per ecDNA when matched 
for copy number (Extended Data Fig. 7e). Further, genes recurrently 
amplified on ecDNA were more likely to be oncogenes compared with 
genes on chromosomal amplifications (Extended Data Fig. 7d), even 
when matched for amplification size (Extended Data Fig. 7f). These 
data, along with the non-chromosomal inheritance of ecDNAs during 
cell division5, are consistent with evolutionary selection for ecDNAs 
encoding oncogenes15.

Oncogenes encoded on ecDNA were associated with a higher copy 
number than non-ecDNA-driven focal amplifications (Extended Data 
Fig. 8a). We found examples of well-established driver oncogenes more 
frequently amplified on ecDNA than on chromosomes, including FGFR2 
(proportion 0.63, median amplification copy number = 16.0), MDM2 
(0.58, 13.7) and CDK4 (0.56, 14.0). Across all tumour types, oncogenes 
in the RTK–RAS (EGFR, ERBB2 and FGFR1), TP53 (MDM2) and cell cycle 
(CCND1 and CDK4) pathways were most commonly amplified on ecDNA 
(Extended Data Fig. 8b). Many of the amplified copies of these driver 
oncogenes contained high copy amplification of missense mutations 
and in the case of CDK4 and EGFR, occurring pre-ecDNA formation 
(Fig. 1d).

To further assess the strength of oncogene selection, we analysed 
the ratio of non-synonymous (dN) to synonymous (dS) substitutions in 
relation to missense, nonsense and essential splice mutations. Genes 
with a high dN/dS ratio are under positive selection (Methods)16. We 
compared the frequency at which genes were amplified in the GEL 
cohort with a mutation-based signal of positive selection as derived 
from the dN/dS ratio (Methods and Extended Data Fig. 8c). We then 
compared mutation-based positive selection between non-amplified, 
ecDNA-amplified and chromosomal-amplified genes, and found that 
EGFR and ERBB2 mutations are under more potent selection when 
amplified (Fig. 1e and Supplementary Table 5). These results indicate 
that ecDNAs containing driver mutations in oncogenes are under strong 
evolutionary pressure. It was not unexpected that 65.7% of tumours with 
detected ecDNA contain oncogenes on those ecDNAs (Bushman cancer 
gene list (http://www.bushmanlab.org/links/genelists); Fig. 2a–c). The 
fraction of tumours with oncogenes on ecDNA using the Cancer Gene 
Census (https://www.sanger.ac.uk/data/cancer-gene-census/) was 51%, 
reflecting differences in the inclusivity of these lists.

ecDNAs contain immunomodulatory genes
Previous data have suggested that patients with ecDNA-driven cancers 
are less likely to respond to immune checkpoint inhibitors as they may 
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have a transcriptional pattern suggestive of immunosuppression4,17. 
However, the mechanism underlying this suppression is not fully under-
stood. ecDNA bearing immunomodulatory genes has previously been 
identified in a biopsy from a patient with Barrett’s oesphagus with 
high-grade dysplasia who went on to develop oesophageal adenocar-
cinoma10. We determined the frequency and tissue context of immuno
modulatory gene amplification on ecDNA and investigated whether 
there is enrichment for these genes. A total of 34% of tumours with 

ecDNA had known immunomodulatory genes amplified on ecDNA, most 
of which were co-amplified with oncogenes located nearby (Fig. 2b,c). 
However, 41.5% of the tumours with immunomodulatory genes 
amplified on ecDNA lacked oncogenes on those same ecDNAs, sug-
gesting a functional role for these elements (Fig. 2b,c). These immuno
modulatory genes were involved in several processes such as the  
negative regulation of immune effector process (Gene Ontology code 
GO:0002698, q value = 4.5 × 10−10), leukocyte-mediated cytotoxicity 
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Fig. 1 | The body map of ecDNA prevalence across 39 tumour types. a, The 
analysis pipeline used to process the GEL cohort (top), with representative 
FISH images and AmpliconArchitect structural variant (SV) views from two 
GEL patients (bottom). The examples show amplicons predicted to be a 
chromosomal amplification consistent with its FISH image (left) and an ecDNA 
consistent with its FISH image (right). Scale bar, 20 μm. b, Bar plot showing 
number of occurrences of ecDNA containing oncogenes with the colour of  
the bar indicating the number of cases from each tissue type. c, Body map of 
cancer-type-specific ecDNA prevalence. Each sub-panel shows the prevalence 
of ecDNA ( y axis) in cancer types specific to a particular tissue type (x axis) 
as shown in the body map schematic. The orange dotted line represents the 
median ecDNA-driven amplification prevalence across the entire cohort. The  
error bars represent the 95% confidence interval for the population proportion. 
d, Stacked bar plots displaying the proportion of types of non-synonymous 
mutations observed in the oncogenes present on ecDNA (top) and the 
proportion of these non-synonymous mutations in different timing categories 
(bottom; Methods). Only the mutations affecting the 21 oncogenes most 

commonly present on ecDNA are shown. e, dN/dS analysis comparing mutations 
in selected oncogenes when present in chromosomal amplifications, ecDNA 
and in areas of the genome with no amplification. The error bars represent the 
95% confidence intervals calculated using the genesetdnds from the package 
dNdScv. ADENO, adenocarcinoma; AST, astrocytoma; BFB, break–fusion–
bridge; BLCA, bladder cancer; BRCA, breast cancer; CHO, chordoma; CHOL, 
cholangiocarcinoma; CNS, central nervous system; GBM, glioblastoma;  
GI, gastrointestinal; HPB, hepatopancreatobiliary cancer; KIRC, clear cell renal 
cell carcinoma; LIHC, liver hepatocellular carcinoma; LMS, leiomyosarcoma; 
LPS, liposarcoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell 
carcinoma; MELA, malignant melanoma; MFS, myxofibrosarcoma; ODG, 
oligodendroglioma; OPT, oropharyngeal tumour; OSA, primary conventional 
osteosarcoma; OVA, ovarian cancer; PAAD, pancreatic adenocarcinoma; PRAD, 
prostate adenocarcinoma; SCC, squamous cell carcinoma; SCLC, small cell 
lung cancer; STAD, stomach adenocarcinoma; TN, triple negative; UGI, upper 
gastrointestinal; UTER, endometrial cancer. The graphics of the Eppendorf 
tube in a and the body map in c were created with BioRender.com.
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(GO:0001909, q value = 2.2 × 10−7) and the negative regulation of lym-
phocyte activation (GO:0051250, q value = 1.7 × 10−4; Fig. 2d, Extended 
Data Fig. 9a–c and Supplementary Table 6).

To examine any potential impact of immunomodulatory genes ampli-
fied on ecDNA, we then compared the estimated T cell fraction18 of 
tumours with oncogene-containing ecDNA (Fig. 2e). Controlling for 
tumour purity, we identified a significant depletion of T cells in sam-
ples with ecDNA containing immunomodulatory genes (OR 0.86, 95% 
CI 0.74–0.99; Fig. 2f) and those with both immunomodulatory genes 
and oncogenes (OR 0.78, 95% CI 0.66–0.92) compared with tumours 
with ecDNA containing oncogenes without immunomodulatory genes, 
potentially contributing to a relatively limited immune response4,17. 
Although the copy number of immunomodulatory genes amplified 
on ecDNAs that lacked oncogenes did not reach the level of those that 
contained oncogenes, the copy number was elevated relative to that 
of other ecDNAs also lacking oncogenes (Wilcoxon P < 10−16; Fig. 2g).

 
Regulatory ecDNAs
One aspect of ecDNA biology is the ability of ecDNAs with different 
cargoes to interact in trans, to form ecDNA hubs8. This is a way to lever-
age combinatorial interactions, as enhancers on the circular particle 
interact with promoters on another to drive gene expression19. We 
reasoned that tumour samples may also show evidence for ecDNAs 
containing only regulatory elements such as promoters, enhancers and 
lncRNAs (referred to as regulatory ecDNA). Therefore, we annotated 
the DNA sequences of identified ecDNA with collated lists of enhanc-
ers and promoters in human cancers20 and lncRNAs21 (Extended Data 
Fig. 9d). Compared with ecDNA with coding genes, regulatory ecDNA 
had a significant increase in the number of distal enhancers (27.3 ver-
sus 13.7, P = 0.00023) and promoters (13.7 versus 3.6, P = 0.001) per 
megabase (Extended Data Fig. 9f). Enhancer-only ecDNAs were fre-
quently co-amplified with ecDNA containing oncogenes on separate 
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ecDNA (n = 140 samples), tended to be smaller (median size 0.12 versus 
3.56 Mb, P < 10−16; Extended Data Fig. 9g) and had lower copy number 
(median 6.90 versus 10.05 copies, P = 0.0078; Extended Data Fig. 9g).

We next measured the amplicon complexity of enhancer-only ecDNA, 
which quantifies the number of segments and the diversity of struc-
ture decompositions inferred by AmpliconArchitect (Methods and 
Extended Data Fig. 1b), and found it to be significantly lower than the 
complexity of ecDNA containing oncogenes (median complexity 3.04 
versus 1.10, P < 10−16; Extended Data Fig. 9g). Enhancer-only ecDNAs 
that were co-amplified with ecDNA containing oncogenes had a signifi-
cantly higher copy number compared with enhancer-only ecDNAs alone 

(median, P = 0.00027; Extended Data Fig. 9e). These data indicate that 
regulatory elements are common cargoes in ecDNA, and are amplified 
through small and simple structures.

ecDNA and genomic instability
The relationship between ecDNA and specific tumour suppressor 
mutations, structural and numerical chromosomal instability and 
whole-genome duplication is largely unexplored across cancer types. 
Controlling for tumour type, TP53 mutations were most strongly asso-
ciated with ecDNA (OR 2.26, 95% CI 1.96–2.62; Fig. 3a). TP53 mutant 
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Fig. 3 | Correlates of genome instability and ecDNA. a, Forest plot showing the 
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status. c, Body map with panels for selected cancer types. Each panel contains a 
forest plot showing associations between ecDNA presence or absence with high 
impact tumour suppressor mutations (top); a forest plot showing associations 
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The graphic of the body map in c was created with BioRender.com.
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tumours (nonsense and missense mutations) and MDM2 encoded 
within ecDNAs were mutually exclusive (χ2 P = 0.00006; Fig. 3b). We 
also detected tissue-type-specific high-impact tumour suppressor path-
way mutations and their association with ecDNA. ecDNA was strongly 
associated with TP53 mutations in endometrial, renal (not otherwise 
specified (NOS)) and luminal oestrogen-receptor-positive breast cancer 
(Fig. 3c and Supplementary Table 7). ecDNA presence was also associ-
ated with NF1 mutations in sarcoma (NOS), ARID1A mutations in renal 
(NOS) and RB1 mutations in bladder cancer (Fig. 3c). TP53 was most 
commonly under selection (using dN/dS) across cancer types associ-
ated with ecDNA (Extended Data Fig. 10a,b and Supplementary Table 8.

To understand whether correlates of genome instability were related 
to ecDNA presence, we determined whole-genome duplication (defined 
as sample ploidy of >2.7) and structural variant burden (detected 
structural variants per megabase) and the weighted genome instabil-
ity index (wGII; defined as the percentage of gained and lost genetic 
material relative to the ploidy of the sample; Methods)22 of examined 
tumour samples. We concurrently calculated an amplicon complex-
ity score for each ecDNA. Low-complexity amplicons may be associ-
ated with the episomal formation of ecDNA, whereas high-complexity 
amplicons are probably associated with catastrophic events such as 
chromothripsis23. Whole-genome duplication, wGII and structural 
variant burden were positively associated with the presence of ecDNA 
in the cohort, dependent on tumour type. Sarcomas were enriched 
for high-complexity amplicons and were associated with increased 
structural variant burden (OR 7.98, 95% CI 4.44–14.7), whereas colo-
rectal tumours were enriched for low-complexity ecDNA and were 
associated with high ploidy (OR 2.65, 95% CI 1.82–3.88) and high wGII, 
but not structural variant burden, suggesting that distinct processes 
may lead to or are associated with different ecDNA species (Fig. 3c and 
Supplementary Table 9).

ecDNA and mutational processes
The scale of the GEL dataset permitted detection of rare mutational 
signatures24. Therefore, we set out to identify the broad spectrum of 
mutational processes that can be preferentially found in tumours har-
bouring ecDNA, using data from ref. 24.

Samples with ecDNA exhibited a higher tumour mutational burden 
(TMB) compared to those with chromosomal amplifications (OR 1.04, 
95% CI 1.02–1.06) and those lacking focal amplifications (OR 1.14, 95% 
CI 1.13–1.16) when controlled for age, tumour type and purity (Fig. 4a 

and Extended Data Fig. 10c); however, this association was limited to 
non-hypermutator phenotypes (Fig. 4b). Controlling for tumour type, 
genome-wide single-base substitution (SBS) signatures (which utilize 
the mutated base and the bases immediately 5′ and 3′ to infer mutational 
processes; Methods), including SBS1 (deamination), SBS4 (tobacco 
smoking), SBS8 (unknown) and SBS13 (APOBEC cytidine deaminase) 
signatures, were more strongly associated with the presence of ecDNA 
than with other focal amplifications (in keeping with previous observa-
tions25,26), whereas signatures of mismatch repair deficiency (MMRd; 
SBS6, SBS15, SBS26 and SBS44) and DNA polymerase δ 1 or DNA poly-
merase ε deficiency (POLD1/POLEd) with concurrent MMRd (SBS10a, 
SBS10b, SBS14 and SBS20) were more negatively correlated with ecDNA 
formation than chromosomal amplifications (Fig. 4b). We also identi-
fied an inverse correlation between ecDNA and hypermutation, driven 
by the association of POLE/POLD1-deficient tumours with the absence 
of ecDNA detection in colorectal and endometrial cancers (Fig. 4b).

To resolve the mutational processes that may be operating on the  
ecDNAs themselves, we compared the mutations found on ecDNA 
with all other remaining mutations in the sample using a maximum- 
likelihood estimate approach to attribute mutations to specific muta-
tional processes (Methods, Extended Data Fig. 10d and Supplementary 
Table 10). The ecDNAs were significantly enriched for SBS3 (homolo-
gous recombination deficiency) and negatively associated with SBS1 
(clock-like deamination), SBS5 (clock-like signature), SBS8 (unknown) 
and SBS17 (unknown). ecDNAs were also found to have more mutations 
related to APOBEC (SBS2 and SBS13) relative to the rest of the genome 
(Extended Data Fig. 10d).

The mutational signatures linked to ecDNA could reflect processes 
involved in their formation or their ongoing evolution. By mapping 
mutations on predicted ecDNA, we were able to infer the timing of 
mutational processes relative to when the ecDNA formed27. Mutations 
that were predicted to be present on all ecDNAs must have occurred 
before ecDNA formation, whereas mutations that were not present 
on all ecDNA copies probably occurred following ecDNA formation 
(Extended Data Fig. 10e). Controlling for tumour type, we found that 
mutational processes that predominantly acted before ecDNA forma-
tion were those associated with tobacco exposure (SBS4 and SBS92), 
ultraviolet light (SBS7a) and clock-like deamination (SBS1). By contrast, 
the signature for homologous recombination repair deficiency, SBS3, 
tended to occur after ecDNA formation (Extended Data Fig. 10f).

In addition, treatments could affect the development of ecDNA. 
In a patient with glioblastoma treated with temozolomide (TMZ), 
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we detected an EGFR c.3106A>T mutation on each of the 67 copies 
of ecDNA. We further detected an SBS11 TMZ-induced MMRd hyper-
mutator signature on these EGFR-mutant ecDNAs, leading to many 
distinct mutations on these ecDNAs that seem to be linked to the 
TMZ treatment, including some which achieved very high allelic 
frequencies suggestive of selection. Taken together, these data sug-
gest that the TMZ treatment can influence the evolution of ecDNAs, 
through both mutagenesis and subsequent selection (Extended  
Data Fig. 10g).

ecDNA and prognostic relevance
Adjusting for age, sex and tumour type, we found that ecDNA was 
strongly associated with increasing tumour stage (stage 2 versus 
stage 1: OR 1.46, 95% CI 1.24–1.68; stage 3 versus stage 1: OR 1.79, 95% 
CI 1.49–2.08; stage 4 versus stage 1: OR 2.18, 95% CI 1.81–2.54; Fig. 5a), 
suggesting a stage-dependent association of ecDNA. Further, control-
ling for tumour type, we found that ecDNA was significantly enriched in 
metastatic samples (non-paired, OR 1.56, 95% CI 1.24–1.96; Fig. 5b and 

Extended Data Fig. 10h), suggesting that ecDNA may play a role in can-
cer progression and the development of metastasis.

We then explored the association between ecDNA and treatment, 
revealing in a logistic regression model, adjusted for age, stage, purity and 
cancer type, that ecDNA detection was significantly associated with prior 
chemotherapy (OR 2.38, 95% CI 1.73–3.27) and targeted treatment (OR 
2.87, 95% CI 1.12–6.43; Fig. 5c). In an adjusted Cox proportional hazards 
model controlled for tumour type, stage, age, sex and underlying genome 
instability (wGII), the detection of ecDNA was associated with shorter 
overall survival (hazard ratio 1.44, 95% CI 1.25–1.66), relative to intra-
chromosomal amplifications with no evidence of ecDNA (hazard ratio 
1.18, 95% CI 1.05–1.33) or tumours with no focal amplifications (Fig. 5d,e).

Discussion
ecDNA presents a complex challenge. Its non-chromosomal inheritance 
drives intratumoural genetic heterogeneity fuelling accelerated evolu-
tion, thereby enabling tumours to resist treatment. The highly accessi-
ble chromatin of ecDNA alters gene regulatory architecture and fosters 
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combinatorial interactions between ecDNA particles2,8,9. By analysing 
the largest available single collection of whole-genome-sequenced 
samples from patients with cancer currently available, we demon-
strate the remarkable diversity of ecDNA elements across cancer, 
illuminating the associated tissue and genetic contexts and the muta-
tional processes to which ecDNA is linked. These results shed light 
on how ecDNA cooperatively drives tumour growth signals through 
high-copy-number oncogene amplification, the possible alteration of 
transcriptional landscapes through regulatory element-only ecDNAs, 
and how it may regulate the immune system through amplification of 
immunomodulatory genes.

The detection of intrinsic and environmental mutational processes 
that tend to occur before or after the emergence of ecDNA, includ-
ing tobacco exposure early on in tumour evolution and homologous 
recombination repair deficiency once ecDNA has formed, provides 
new insight into factors that may contribute to ecDNA formation and 
progression. This is particularly important given the recent finding 
that ecDNA may arise in high-grade dysplasia and contribute to tumo-
rigenesis10. Further, the finding that ecDNA levels may rise after cyto-
toxic and targeted therapy treatments also suggests a potential role 
for combinations of ecDNA-directed and conventional or precision 
oncology treatments.

Our data also reveal some unanticipated results, such as the high 
level of ecDNA found in HER2+ breast cancer (39.3–53.7%), including 
amplification of ERBB2 on ecDNA in 26% of HER2+ breast cancers (Sup-
plementary Table 2). Given the known role of ecDNA in driving inter-
cellular heterogeneity, the demonstration that increased HER2+ 
copy-number heterogeneity is associated with shorter disease-free 
survival is notable28. Understanding to what extent HER2+ heterogeneity 
is ecDNA-driven will be of critical importance, as will the elucidation of 
the full complement of ecDNA cargo and its function in HER2+ cancers.

Bioinformatic detection of ecDNA from WGS data has inherent limita-
tions. Some of the limitations of ecDNA detection are tumour-specific, 
such as the effects of tumour purity and ecDNA copy number. Other 
limitations are more technical, including the detection of structural 
variants in repetitive regions of the genome, the effects of sequencing 
coverage, and algorithmic challenges in distinguishing types of focal 
amplification. Although the ecDNA detection methods used here have 
been shown to be robust, improvements in sequencing technologies 
and methods for ecDNA detection should provide even more refined 
estimates of ecDNA frequency across cancers.

Finally, we note that ecDNA is associated with poor survival even 
when accounting for underlying genome instability, suggesting that 
there are ecDNA-specific effects that contribute to poor outcomes in 
patients. As the contribution of ecDNA to intratumour heterogeneity, 
drug resistance and poor survival through the rapid generation and 
fine-tuning of gene dosage is becoming more apparent29, the important 
and ongoing challenge to determine therapeutic vulnerabilities and 
identify target compounds to limit ecDNA evolution and maintenance 
will be applicable across the pan-cancer spectrum.
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Methods

Dataset
GEL is a company funded by the Department of Health and Social Care 
in the UK. Part of the flagship project, 100kGP, was set up to sequence 
100,000 whole genomes from National Health Service (NHS) patients 
with rare diseases and cancer. In this study, we utilized version 12 of 
the cohort, comprising 14,778 participants. Sequencing libraries 
generated from tumour and matched germline DNA samples were 
sequenced using 150-base-pair paired-end reads on Illumina HiSeq 
platforms. In total, 16,355 tumour and 16,555 germline samples under-
went whole-genome sequencing at a target depth of 100× for tumour 
and 30× for germline.

We included the cancer types from the following tissues (n = 17): 
breast, lung, stomach, neuroendocrine, skin, oropharyngeal, colorec-
tal, kidney, prostate, hepato-pancreatobiliary, bladder, bone and soft 
tissue, ovary, endometrium, central nervous system, lymphoid and 
myeloid. The following tumour subtypes were then included (n = 39): 
bladder; chordoma; primary conventional osteosarcoma; liposarcoma 
(both dedifferentiated and myxoid); leiomyosarcoma; myxofibrosar-
coma; sarcoma, not otherwise specified; HER2+ breast cancer; luminal 
(oestrogen receptor positive) breast cancer; triple-negative breast 
cancer; breast cancer, not otherwise specified; oligodendroglioma; 
astrocytoma; glioblastoma; adult glioma, not otherwise specified; 
colorectal cancer; hepato-pancreatobiliary cancer, not otherwise speci-
fied; liver hepatocellular carcinoma; cholangiocarcinoma; pancreatic 
adenocarcinoma; malignant pleural mesothelioma; small cell lung 
cancer; lung squamous cell carcinoma; lung adenocarcinoma; lung 
cancer, not otherwise specified; lymphoid; myeloid; neuroendocrine 
tumour; oropharyngeal cancer; ovarian cancer; clear cell renal carci-
noma; malignant melanoma; renal cancer, not otherwise specified; 
upper GI squamous cell carcinoma; stomach adenocarcinoma; upper 
GI adenocarcinoma; upper GI cancer, not otherwise specified; and 
endometrial carcinoma.

Most tumour samples in the GEL cohort come from patients whose 
cancers were early disease stage and had not yet received treatment 
(Fig. 1c). Samples with tumour purity of <10% were excluded, as were 
cancers of unknown primary, paediatric cancers and testicular germ 
cell tumours (510 samples). In the cohort, 3.8% (598) of samples were 
fixed-formalin paraffin embedded (FFPE)30. Staging information was 
available for 10,780 (72.9%) patients, with 836 (5.7%) patients recorded 
as having stage 4 disease (Fig. 1c). Median depth of coverage for tumour 
samples was 97.6× and for germline samples was 32.6×. A total of 1,800 
(12.1%) patients were recorded as receiving systemic anticancer treat-
ment before biopsy. In this group, the treatment type was classified 
into hormonal (n = 27), immunotherapy (n = 57), targeted (n = 415) or 
cytotoxic chemotherapy (n = 1,653).

Inclusion and ethics
The research presented in this manuscript is compliant with ethical 
regulations and was approved by the East of England—Cambridge South 
Research Ethics Committee (Research Ethics Committee reference 14/
EE/1112, Integrated Research Application System ID 166046). Recruit-
ment of participants was carried out across 13 NHS Genomic Medicine 
Centres and all participants provided their written and informed consent.

ecDNA calls
Focal DNA copy-number alterations were identified using CNVKit v0.98. 
AmpliconArchitect v1.2 was used to construct cyclic paths from identi-
fied focal amplifications, and AmpliconClassifier v0.4.12 was used to 
determine whether these paths were likely to be ecDNA. These steps 
are packaged into a single workflow available at https://github.com/
AmpliconSuite/AmpliconSuite-pipeline.

AmpliconArchitect identifies the structure of focal amplifications by 
using seed intervals that define regions that are focally amplified and 

extend beyond them to look for copy-number changes or discordant 
edges. For this analysis, seed intervals were defined as regions of greater 
than 50 kb, with a threshold copy number of greater than 4.5, double 
the ploidy of the tumour and at least 2.5 additional copies above the 
median arm-level copy number. The regions are then merged to form a 
breakpoint graph, which can be broken down into simple and complex 
cycles to identify any circular paths that could be indicative of ecDNA. 
Within the seed interval, it is possible that an ecDNA reconstruction 
could be less than 50 kb. AmpliconArchitect also masks highly repetitive 
regions such as α-satellites in centromeric and peri-centromeric regions.

We conducted additional FISH on 11 tissue samples that we were able 
to obtain from GEL, demonstrating 90.9% (10/11) accuracy of our com-
putational calls, comparable to previous validation of these methods4.

Patients were categorized as having ecDNA if ecDNA was detected 
in their tumour. Patients who had both chromosomal amplifications 
and ecDNA were included in the ecDNA category.

We then annotated each ecDNA according to whether or not it con-
tained an oncogene as categorized by the Cancer Gene Census (https://
cancer.sanger.ac.uk/census). Those that contained an oncogene were 
denoted as oncogenic ecDNA. We then further divided ecDNA accord-
ing to whether or not any genes were annotated, classifying it as ‘ecDNA 
without known oncogenes’ and ‘ecDNA without coding genes’. We 
then carried out an over-representation analysis for genes encoded 
on ecDNA without known oncogenes to demonstrate an enrichment 
for immunomodulatory genes.

Amplicon complexity
The amplicon complexity score, as defined in ref. 10, is calculated by 
AmpliconClassifier (Extended Data Fig. 1b). For each seed-interval- 
defined amplicon, AmpliconArchitect produces a copy-number-aware 
(CNA)-breakpoint graph. AmpliconArchitect also outputs decom-
positions that represent cyclic and non-cyclic paths through this 
CNA-breakpoint graph. These decompositions are passed as input 
to AmpliconClassifier to produce the complexity score, which aims 
to capture the diversity of the cyclic and/or non-cyclic paths present. 
Each path has a copy count and a length in kilobase pairs, which are 
combined to create a length-weighted copy number (normalized by 
the total length-weighted copy number present in the CNA-breakpoint 
graph), and the complexity score is calculated through the sum of three 
log-transformed measures: the total count of copy-number segments 
present in the amplicon; the normalized length-weighted copy number 
of each cyclic path; and the residual normalized length-weighted copy 
number that is not explained by cyclic paths.

Over-representation analysis
Over-representation analysis was carried out using the cluster profiler 
package (v4.6.2)31. To determine whether the genes that were anno-
tated on ‘ecDNA without known oncogenes’ were in predefined sets 
that were present at frequencies higher than expected by chance, the 
annotated genes were assigned to a specific gene set (denoted by the 
GO term). Following this, the observed proportion of genes assigned 
to that GO term was compared with the expected proportion given the 
background of all genes using Fisher’s exact test.

A false discovery rate-adjusted P value was obtained using the  
Benjamini–Hochberg method, with the threshold for significance set 
at q > 0.001. The minimum gene set size considered was 100. ecDNAs 
were considered immunomodulatory if a gene from the significant 
gene sets mapped to an ecDNA that did not contain an oncogene, and 
that significant gene set had an immunomodulatory function (GO 
terms: 0006968, 0002228, 0042267, 0001906, 0001909, 0002698, 
0001910, 0031341, 0002367, 0002695, 0050866, 0051250, 0050777).

Permutation test for oncogene enrichment
For permutation testing, first, the proportion of focal amplifications 
that contained oncogenes was calculated. A total of 256 genes were 

https://github.com/AmpliconSuite/AmpliconSuite-pipeline
https://github.com/AmpliconSuite/AmpliconSuite-pipeline
https://cancer.sanger.ac.uk/census
https://cancer.sanger.ac.uk/census
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identified as oncogenes. From the pool of genes identified on ecDNA 
at least once (n = 20,713), a random set of 256 genes were sampled and 
the proportion was calculated. This calculation was repeated 10,000 
times to obtain a background distribution of the proportion of genes 
that belong to a gene set of equal size.

Estimates of selection using dN/dS
The dN/dS estimates were calculated using the dNdScv package16, 
which was run on all mutations available in the cohort. This method 
uses a maximum-likelihood approach in its analysis of the ratio of 
non-synonymous (missense, nonsense and essential splice mutations) 
to synonymous substitutions to infer a measure of the strength of selec-
tion acting on protein-coding genes. It also estimates a background 
mutation rate of each gene through joint analysis of both local and 
global information that takes into account sequence composition and 
the contribution of mutational signatures. In our analysis, estimation 
of dN/dS ratios was carried out across the genome, as well as stratified 
by context including ecDNA amplification, non-ecDNA amplification 
and non-amplified areas of the genome (Extended Data Fig. 10a). Six 
genes were amplified at >5% of the cohort with a strong signal of positive 
selection (dN/dS estimate > 5); YEATS4, CCT2, FPS6 (sarcoma), KRAS, 
ERBB2 (upper gastrointestinal) and EGFR (central nervous system; 
Extended Data Fig. 7f).

Somatic mutation calling/ploidy and purity estimation
Strelka2 (version 2.4.7)32 and Manta (version 0.28.0)33 were used to call 
mutations and SVs, respectively. Manta combines paired and split-read 
evidence for SV discovery and scoring. The following filters were 
applied to the raw variant calls: SVs with a normal sample depth near one 
or both variant break-ends three times higher than the chromosomal 
mean; SVs with a somatic quality score of <30; somatic deletions and 
duplications with a length of >10 kb; somatic small variants (<1 kb) with 
the fraction of reads with MAPQ0 around either break-end of >0.4. For 
purity estimates, CCube was used34. For ploidy estimates, the CakeTin 
pipeline from ref. 35 was utilized, available for 9,141 samples.

Calculation of wGII
The wGII score was calculated as the proportion of the genome with 
aberrant copy number relative to the median ploidy, weighted on a per 
chromosome basis22. Both median ploidy and copy-number segments 
were rounded to the nearest integer copy state from CNVKit.

SBS signature analysis
Ref. 24 quantified the fraction of SBSs found in each of the 96 trinu-
cleotide contexts from the multiple WGS cohorts (including GEL) and 
analysed these data with non-negative matrix factorization to infer a 
set of SBS signatures24. We then used this reference set of SBS signa-
tures to infer the most likely SBS signature for mutations in our cohort. 
Using the sample-level SBS exposures and the SBS reference signatures, 
each trinucleotide channel context is assigned a likelihood value by 
multiplying the sample exposure weight by the reference signature 
weight. This allows estimation of the most likely mutational process 
for each mutation.

Timing of SBS signatures
To perform this analysis we used the SBS signatures as defined in ref. 24. 
By analysing the variant allele frequency distribution of single nucleo-
tide variants (SNVs) at focal amplification sites, it becomes possible to 
temporally assess the formation of ecDNA and the mutational processes 
occurring in that genomic region. This assessment involves calculating 
the mutational multiplicity, which is determined by the copy-number 
state of an SNV within a predicted ecDNA locus. SNVs are classified as 
occurring either pre- or post-ecDNA formation on the basis of whether 
the SNV copies are equivalent to the total copy number at the locus. The 
mutational multiplicity can be determined by the following formula:

p p pCPNmut = VAF × (1/ ) × ( × CPNfocal) + CPNnorm × (1 − )

in which VAF represents the variant allele frequency, p represents 
tumour purity, CPNfocal represents the focal amplification copy num-
ber, and CPNnorm represents the local copy number in the normal 
genome. Mutations are considered pre-ecDNA formation if CPNmut is 
greater than 0.8 times CPNfocal. Mutations are classified as post-ecDNA 
formation if CPNmut is less than 0.8 times CPNfocal and greater than 
CPNnorm/2.

By aggregating mutations across multiple samples within the same 
tumour, a maximum-likelihood function is used to determine whether 
ecDNA tends to occur before or after a mutation process. This involves 
creating a mutational catalogue that categorizes all mutations on the 
basis of 96 trinucleotide context channels and their pre- or post-ecDNA 
formation status. Using the sample-level SBS exposures and the SBS ref-
erence signatures, each trinucleotide channel context is assigned a likeli-
hood value by multiplying the sample exposure weight by the reference 
signature weight. This allows estimation of the most likely mutational 
process for each mutation and the identification of processes acting 
early or late in the context of ecDNA formation. We then carried out a 
Wilcoxon test, comparing the probabilities that a mutation within the 
ecDNA locus is early with the probability that it is late on each sample, 
and presented the median difference between the two categories.

Statistical analysis
All statistical tests were carried out in R (4.1.2). Correlation tests were 
carried out using cor.test with either Spearman’s method or Pearson’s 
method, as specified. Tests comparing distributions were carried out 
using wilcox.test or t.test.

Proportions were compared using prop.test. For prevalence esti-
mates, the 95% CI of a proportion was reported using propCI. Logistic 
regression models were fitted using glm(outcome ~ exposure_variables, 
family = ‘logit’), with ORs and 95% CIs reported. For the regression 
analysis in which we controlled for tumour type, we excluded those 
tumour types with fewer than five patients sampled.

GEL sample FISH
FISH was carried out on 4 μM FFPE tissue sections according to a 
combination of the Agilent Technologies Protocol (Histology FISH 
Accessory Kit K5799) and the Abbott Molecular Diagnostic FISH probe 
protocol. Briefly, FFPE sections were dewaxed in xylene for 5 min fol-
lowed by rehydration in 100%, 80% and 70% ethanol and then washed 
twice with Agilent Technologies wash buffer. The FFPE tissue was then 
incubated at 98 °C for 10 min in Agilent Technologies pretreatment 
solution. The Coplin jar containing the slides was removed from the 
98 °C water bath and allowed to slowly cool for an additional 15 min. 
The FFPE slides were washed twice with Agilent wash buffer. Stock 
pepsin (Agilent stock pepsin) was applied to the slide for 10 min at 
37 °C. FFPE slides were washed twice with Agilent wash buffer and 
then dehydrated using 70%, 80% and 100% ethanol before probe 
hybridization. Gene-specific probes containing chromosome-specific 
centromere enumeration probes (CEP) to MDM2 (+control CEP12 
spectrum green) (Vysis/Abbott), MDM2 and CDK4 (Empire Genom-
ics), PDGFRA (+control CEP4 spectrum green) (Empire Genomics) 
and MYC (Vysis/Abbott) were applied directly to the tissue sections 
with the coverslip being sealed with rubber solution glue.

Denaturation of the probes on the tissue was carried out at 75 °C for 
7 min. The slide was then incubated overnight in a moist box at 37 °C 
for 16 h. Slides were washed for 10 min at 73 °C with 0.4× SSC contain-
ing 0.3% Igepal (Sigma) followed by a 10-min wash at room tempera-
ture with 2× saline-sodium citrate (SSC) containing 0.1% Igepal. Slides 
were allowed to air dry and then counterstained with a Vectashield 
mounting medium containing 4′,6-diamidino-2-phenylindole (DAPI; 
ThermoFisher). Images were captured using the Applied Precision 
DeltaVision Microscope.



HER2 FISH
FFPE tissue sections were deparaffinized by two 5-min incubations 
in Histo-Clear (Electron Microscopy Sciences 64110), followed by 
5 min in 100% ethanol and 5 min in 70% ethanol. Samples were then 
incubated in 0.2 N HCl for 20 min. Slides were then placed in 10 mM 
antigen retrieval buffer (10 mM citric acid pH 6.0) and incubated in a 
vegetable steamer (90–95 °C) for 20 min. Slides were briefly washed 
in 2× SSC and then treated with proteinase K digestion buffer (1:100 
dilution of proteinase K NEB P8107 in TE buffer, 100–200 μl per sam-
ple) for 1 min at room temperature. Slides were then dehydrated by 
incubation for 2 min each in 70%, 85% and 100% ethanol. The HER2 
FISH and Chr. 17 control centromere enumeration FISH probes (Empire 
Genomics ERBB2-CHR17-20-ORGR) were diluted 1:5 in hybridization 
buffer (Empire Genomics), added to each slide, and covered with a 
coverslip. Slides were denatured at 75 °C for 5 min followed by over-
night hybridization at 37 °C in a humidified chamber. Slides were 
washed twice in 0.4× SSC + 0.3% Igepal630 (5 min, 40–60 °C) and 
then in 2× SCC + 0.1% Igepal630 (5 min, room temperature). Slides 
were treated with a TrueVIEW Autofluorescence Quenching kit (Vector 
laboratories SP-8400) according to the manufacturer’s directions for 
2 min and then washed in 2× SSC (5 min, room temperature). Slides 
were mounted with ProLong Gold antifade with DAPI (ThermoFisher 
P36931). Slides were imaged on a Zeiss LSM880 confocal microscope 
using a 0.45-μm Z-step size. Maximum-intensity projections were 
generated using ZEN2.3 SP1 FP3 software. This component of the study 
was approved by the Stanford University Institutional Review Board 
(number 69198).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Aggregated information used for analysis is available in Supplementary 
Tables 1–10. Requests for raw sequencing data, variant calls, survival 
data, quality metrics and a summary of findings submitted to genom-
ics laboratory hubs can be made through the GEL Research Environ-
ment, a secure cloud workspace. To access the genomic and clinical 
data in this Research Environment, researchers must first apply to 
become a member of either the GEL Research Network (previously 
known as the GEL Clinical Interpretation Partnership; https://www.
genomicsengland.co.uk/research/academic) or a Discovery Forum 
industry partner (https://www.genomicsengland.co.uk/research/
research-environment). First, a signed participation agreement must 
be submitted by the institution to gecip-help@genomicsengland.
co.uk. Then, following selection of an appropriate research domain, an 
online application should be submitted. Applications will be reviewed 
within ten working days, following which institutions must validate the 
researcher’s affiliation. On approval, access to the GEL Research Envi-
ronment will be granted following successful completion of an online 
information governance training module. Further details of the types 
of data available (hospital episodes, survival and treatment data) can 
be found at https://re-docs.genomicsengland.co.uk/data_overview/. 
The cohort of patients with cancer and longitudinal clinical information 
on treatment and mortality can be explored with Participant Explorer 
(https://re-docs.genomicsengland.co.uk/pxa/).

Code availability
The code used to run the SBS likelihood assignment, permutations, 
mutational timing and figures is available in the GEL Research Envi-
ronment (https://re-docs.genomicsengland.co.uk/access/) under  
/re_gecip/shared_allGeCIPs/pancancer_ecdna/code/. The link to 

becoming a member of the GEL Research Network and obtaining access 
can be found at https://www.genomicsengland.co.uk/research/aca-
demic/join-gecip.
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Extended Data Fig. 1 | Overview of cohort and ecDNA characterisation 
methodology. a, Schematic further demonstrating the analysis pipeline 
applied to the GEL cohort. Each tumour sample is subjected to whole genome 
sequencing, then aligned to the reference genome (hg38). This sequencing 
data is then analysed with CNVkit to detect areas of the genome that are 
amplified with high copy number. The sequencing data corresponding to these 
areas of amplification are then passed to as seed intervals to AmpliconArchitect 
which then defines a copy number and structural variant aware amplicon  
graph that can be decomposed into linear paths and cycles. The output from 
AmpliconArchitect is then passed to AmpliconClassifier which, after filtering, 
classifies areas of the amplicon as either breakage-fusion-bridge, ecDNA, 

complex non-cyclic focal amplification, or a linear focal amplification as well as 
performing amplicon complexity scoring. b, Schematic illustrating amplicon 
complexity scoring. (left) Low complexity amplicon - showing a simple graph 
that consists of a single segment with one cycle that explains all the amplicon 
copy number. (middle) Higher complexity amplicon showing a more complex 
graph that consists of three segments whose single cycle is only able to explain 
the majority of the amplicon copy number. (right) High complexity amplicon 
showing a graph that consists of 4 segments that can only explain the majority 
of the amplicon copy number with two cycles. c, Stacked bar plots for each 
tissue type showing the number of samples, whether treatment was received 
prior to biopsy, and disease stage.
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Extended Data Fig. 2 | FISH of Genomics England sarcoma samples. Images 
of representative fields of view from interphase FISH images for each of the 11 
sarcoma tumours from the GEL cohort for which material was available. Each 

image is annotated with the FISH probes applied in addition to DAPI (blue) and 
the AmpliconArchitect prediction of the presence of either a chromosomal 
amplification or ecDNA. Scale bar is 20 μm.
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Extended Data Fig. 3 | Tumour purity, ecDNA copy number, and ecDNA size. 
a, Box plots showing purity estimates for each of tumour samples from the 39 
cancer types in the GEL cohort. b, Box plots showing the log-transformed copy 
number of ecDNA grouped by tissue type. c, Box plots showing the size in 

megabases of ecDNA grouped by tissue type. d, Box plots of log-transformed 
copy number of ecDNA grouped by the oncogenes present on the ecDNA and 
tissue type. e, Box plots of ecDNA size in megabases grouped by the oncogenes 
present on the ecDNA and tissue type.
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Extended Data Fig. 4 | FISH of HER2+ breast cancer samples. Images of 
representative fields of view from interphase FISH images for each of the  
3 HER2+ breast cancers from an independent cohort for which material was 
available for FISH but not for WGS.



Extended Data Fig. 5 | Focal amplifications and interchromosomal ecDNA. 
a, (top) Boxplots of focal amplification copy number for ecDNA (red) and 
chromosomal amplifications (yellow) grouped by cancer type. (bottom) Violin 
plot of the number of ecDNA observed per tumour grouped by cancer type.  
b, (left) schematic demonstrating the concept of interchromosomal ecDNA. 
(right-top) Strip plot showing the count of interchromosomal ecDNA 
breakpoints for interchromosomal ecDNA (red) and non-interchromosomal 

ecDNA (light grey) grouped by cancer type. (right-bottom) Stacked bar plot 
showing the proportion of ecDNA observed for each cancer type that is 
interchromosomal (red) or non-interchromosomal (grey). The graphics  
in the schematic were created with BioRender.com. c, Heatmaps depicting 
chromosome pairs involved in interchromosomal ecDNA for liposarcoma, 
osteosarcoma, HER2+ breast cancer and luminal breast cancer.

https://biorender.com


Article

Extended Data Fig. 6 | See next page for caption.



Extended Data Fig. 6 | Multi-oncogene ecDNA and multiple ecDNA per 
sample. a, Bar plot showing the frequency at which one or more oncogenes  
are found on the same ecDNA; the yellow dotted line represents the median 
number of ecDNA per sample and the orange dotted line represents the mean 
number of ecDNA per sample. b, (left) Schematic demonstrating an ecDNA 
containing two or more oncogenes. (right) Heatmap showing how often pairs 
of oncogenes are found on the same ecDNA. Blue outlined boxes indicate 
potential oncogene pairs consisting of oncogenes from the same chromosome. 
The corresponding chromosome is labeled to the left of the blue outlined box. 
c, (left) Schematic demonstrating the presence of two or more oncogenes 
present on distinct ecDNA with in the same tumour. (middle) Pie chart showing 
the proportion of tumours demonstrating different oncogenes on separate 

ecDNA that belong to each tissue type included in the study. Grey boxes 
highlight specific gene pairs present in the two tissue types with the highest 
proportion of oncogenes present on separate ecDNA in the same tumour. 
(right) Heatmap showing pairs of oncogenes found on separate ecDNA in  
the same tumour. d, Stacked bar plot showing the proportion of oncogenes 
observed on ecDNA in ≥20 tumours that were found in the context of an ecDNA 
containing that single oncogene (yellow), in a pair of oncogenes from the same 
chromosome (orange), or in a pair of oncogenes from different chromosomes 
(brown). e, Box plots examining the copy number of pairs of oncogenes 
identified on distinct ecDNAs found in the same tumour (wilcoxon p value 
shown at the top of the plot). The graphics of the ecDNAs in b,c were created 
with BioRender.com.

https://biorender.com
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Extended Data Fig. 7 | Multi-sample ecDNA detection and ecDNA gene 
complement characteristics. a, Forest plot of results of a regression model 
examining the detection of ecDNA in relation to the number regions sampled 
from the same tumour. b,Stacked bar plot showing the number of patients  
with ecDNA detected and multiple regions sampled from their tumour. The 
colours indicate whether ecDNA was detected in ≥ 1 region (but not all regions, 
grey) or all regions (red). c, Bar plot showing permutation testing results 
demonstrating an enrichment of oncogenes in focal amplifications.  
d, Scatterplot showing comparison of ecDNA (dark red) and chromosomal 

amplifications (yellow) for oncogene enrichment. The x-axis represents a 
sliding window that quantifies the proportion of all genes that are oncogenes 
at each number of recurrences in the cohort. e, Bar plots showing the mean 
number of oncogenes stratified by copy number. f, Bar plots showing (top) the 
mean number of oncogenes, (middle) the mean number of tumour suppressor 
genes, (bottom) the total number of genes for chromosomal amplifications 
and ecDNA grouped by size. Bars that are red signify ecDNA and yellow 
signifies chromosomal amplifications.
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Extended Data Fig. 8 | Oncogene frequency on ecDNA. a, (top) Bar plot 
showing the frequency of amplifications of any kind (either ecDNA or 
chromosomal) affecting oncogenes in the GEL cohort. (middle) Box plots of 
copy number for oncogenes when affected by chromosomal amplifications 
(yellow) or ecDNA (red). (bottom) Stacked bar plot showing the proportion  
of amplifications for each oncogene that are chromosomal (yellow) or ecDNA 
(red). b, Heatmap showing oncogenes recurrently amplified (n > 18) on  
ecDNA by cancer type. Tissue type is indicated by the coloured bar at the top  
of the heatmap. The colour of each cell indicates the relative frequency of its 
occurrence compared to all other oncogenes on ecDNA. The total number of 
ecDNAs carrying a particular oncogene is displayed to the right of the heatmap 

before the name of the oncogene. Genes marked with an asterisk are those  
also present in the IntOGen database36 and the Cancer Gene Census. c, Scatter 
plots for each tissue type showing the dN/dS estimates of genes in the GEL 
cohort (x-axis) versus fraction of the genes subject to amplification (y-axis). 
Oncogenes are represented by red dots, tumour suppressor genes by yellow 
dots, and non-cancer genes by grey dots. “sig. amp” is an abbreviation for 
“significantly amplified” and “sig. dNdS” is an abbreviation for “significant by 
dNdSvc analysis”. Only genes significantly amplified and found significant by 
dN/dS analysis are annotated and are found in the top right quadrant of each 
subplot for a tissue type. Only tissue types with sufficient mutations and 
amplifications for the analysis were included.
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Extended Data Fig. 9 | Immunomodulatory genes and non-coding  
elements on ecDNA. a, Plot showing results of an overrepresentation analysis 
of genes present on ecDNA that do not contain oncogenes. b, Plot showing 
results of an overrepresentation analysis of genes found in any focal 
amplification. c, Plot showing results of an overrepresentation analysis of 
genes found in chromosomal amplifications that do not contain oncogenes.  
d, Heatmap of lncRNAs found on ecDNA that do not contain protein coding 
genes. e, Box plot showing the copy number of enhancer-only ecDNAs present 

in a sample without oncogene containing ecDNA and the copy number of 
enhancer-only ecDNAs present in a sample that also contains a separate 
oncogene carrying ecDNA. f, Boxplots showing the number of non-coding 
elements per megabase in ecDNA with oncogenes and ecDNA with only 
regulatory ecDNA. g, Box plots showing comparisons of (left) the amplicon 
complexity, (middle) ecDNA copy number count, (right) ecDNA size in 
megabases in enhancer only ecDNA versus ecDNA containing oncogenes.



Extended Data Fig. 10 | Mutational processes associated with focal 
amplifications. dN/dS analysis of all genes across the cohort. Tumour samples 
were categorised by whether they were found to contain ecDNA, chromosomal 
amplifications, or no amplifications. dN/dS analysis was then performed in 
these subcategories for each cancer type. a, Stacked bar plot showing the total 
number of categories across all cancer types for which a gene was found to be 
under positive selection. Colours represent the combination of subcategories 
in which the gene was found to be under positive selection for a cancer type.  
b, Heatmap showing for each gene which cancer types it was found to be  
under positive selection and in which subcategories of tumour samples defined 
by the presence or absence of ecDNA and chromosomal amplifications.  
c, Box plots showing comparison of TMB between samples with ecDNA  
(dark red), only chromosomal amplifications (yellow), or no focal amplifications 

of any kind (blue). Dashed line represents the median TMB per category.  
d, (top) Schematic illustrating the method of comparing SBS signatures in  
focal amplifications, either chromosomal or ecDNA, with those in flanking 
regions as well as with global signatures. (bottom) Plots demonstrating SBS 
enrichments. e, Schematic illustrating method of timing mutations in areas of 
the genome amplified by ecDNA. f, Scatter plot showing relative changes in SBS 
signature probability pre and post ecDNA formation. g, Schematic illustrating 
a case with a post-temozolomide treatment SBS11 mutational signature of 
mutations present on ecDNA in a tumour that also has an early EGFR mutation 
also present on the same ecDNA. h, Bar plot showing the number of metastatic 
samples per cancer type and which cancer types were included in the regression 
model.
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in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used

Data analysis Focal DNA copy number alterations were identified using CNVKit v0.98. Amplicon Architect v1.2 was used to construct cyclic paths from 
identified focal amplifications, and Amplicon Classifier version 0.4.12 was used to determine whether these paths were likely to be ecDNA. 
Amplicon Architect is a tool that identifies the structure of focal amplifications by using seed intervals that define regions that are focally 
amplified and extend beyond them to look for copy number changes or discordant edges. For this analysis, focal amplifications were defined 
as regions of over 50Kb, with a copy number greater than four and twice the ploidy estimation of the chromosome arm. 
 
R packages used in version 4.0.2:  
survival (v3.2.11) 
survminer (v0.4.9) 
fst (version 0.9.4)  
tidyverse (version 1.3.0)  
ggplot2 (version 3.3.2)  
dplyr (version 1.0.2)  
tidyr (version 1.1.2)  
gridExtra (version 2.3)  
cowplot (version 1.1.0)  
ggpubr (version 0.4.0)  
reshape2 (version 1.4.4)  
tibble (version 3.0.4)  
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RColorBrewer (version 1.1-2)  
plyr (version 1.8.6)  
dndscv (version 0.0.1.0)  
deconstructSigs (version 1.9.0)  
ggrepel (version 0.8.2)  
GenomicRanges (version 1.38.0)  
stringr (version 1.4.0)  
data.table (version 1.13.2)  
magrittr (version 2.0.1)  
ComplexHeatmap (version 2.4.5) 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All data is available following application to access to the Genomics England Research Environment.

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Sex (biological attribute) was used as an explanatory variable in the Cox proportional hazards model for the association with 
ecDNA presence and survival

Reporting on race, ethnicity, or 
other socially relevant 
groupings

We did not report on race, ethnicity or other socially relevant groupings

Population characteristics For the Cox proportional hazards model, patients were grouped according to sex (biological attribute; male = 3262, female = 
5615) and age groups (0-44 years, n = 481; 45-59 years, n = 2215; 60 - 69 years, n = 2648; 70-79 years, n = 2581; 80+ years, n 
= 951)

Recruitment Patients were recruited to eleven Genomic Medicine Centres across the United Kingdom;  
 
- East of England NHS Genomic Medicine Centre (Led by Cambridge University Hospitals NHS Foundation Trust) 
- Greater Manchester NHS Genomic Medicine Centre (Led by Central Manchester University Hospitals NHS Foundation Trust) 
- West Midlands NHS Genomic Medicine Centre (Led by University Hospitals Birmingham NHS Foundation Trust) 
- North East & North Cumbria NHS Genomic Medicine Centre (Led by Newcastle upon Tyne Hospitals NHS Foundation Trust) 
- North Thames NHS Genomic Medicine Centre (Led by Great Ormond Street Hospital NHS Foundation Trust) 
- North West Coast NHS Genomic Medicine Centre (Led by Liverpool Women’s NHS Foundation Trust) 
- Oxford NHS Genomic Medicine Centre (Led by Oxford University Hospitals NHS Trust (OUH)) 
- South London NHS Genomic Medicine Centre (Led by Guy’s and St Thomas’ NHS Foundation Trust) 
- South West NHS Genomic Medicine Centre (Led by Royal Devon & Exeter NHS Foundation Trust) 
- Wessex NHS Genomic Medicine Centre (Led by University Hospital Southampton NHS Foundation Trust) 
- West London NHS Genomic Medicine Centre (Led by Imperial College Healthcare NHS Trust) 
 
Data release version 11 was used for the analysis and was launched in 17/12/2020, from which 15,609 participants are 
included.

Ethics oversight Genomics England has approval from the HRA Committee East of England – Cambridge South (REC Ref 14/EE/1112).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We utilised the Genomics England version 7 cohort, comprising 16,355 whole genome sequenced samples. We included the following tumour 
types: breast, lung, stomach, neuroendocrine, skin, oropharyngeal, colorectal, kidney, prostate, hepato-pancreatobiliary, bladder, bone and 
soft tissue, ovary, endometrium, central nervous system (CNS), lymphoid and myeloid. 

Data exclusions For quality control, we excluded samples with an estimated purity of < 10%. Paediatric and germ cell tumours were also excluded. For 
mutational signature analysis the tumour purity cut off was 20%.

Replication All available data was analysed.

Randomization Randomisation is not relevant as this is an observational study.

Blinding Blinding is not relevant as this is an observational study

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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